simpleregression

November 4, 2024

[23]: import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

Créez vos données d'entrainement

Supposons que wvous ayez une vartable indépendante X et une wvartable dépendante,
=Y

X = np.array([[1], [2], [3], [41])

y = np.array([2, 4, 5, 4])

Créez le modéle de régression linéaire
modele_regression = LinearRegression()

Entrainez le modéle avec wos données
modele_regression.fit (X, y)

Une fois le modéle entrainé, wvous pouvez l'utiliser pour faire des prédictions
Par exemple, pour prédire une valeur pour X=5

prediction = modele_regression.predict([[5]])

plt.scatter(X, y)

plt.plot(X,modele_regression.predict(X), c='red', lw =3)

[23]: [<matplotlib.lines.Line2D at 0x21763c133e0>]

5.0 ~ @

4.5

4.0 1 @

3.5

3.0

2.5 7

209 @

1.0 1.5 2.0 2.5 3.0 3.5

[19]: import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_regression
from sklearn.linear_model import SGDRegressor
np.random.seed (0)
X, y = make_regression(n_samples=100, n_features=1, noise=10)
plt.scatter(x, y)
model = SGDRegressor (max_iter=1000, eta0=0.001)
model.fit(x,y)
print('Coeff R2 =', model.score(x, y))
plt.scatter(x, y)
plt.plot(x,model.predict(x), c='red', lw =3)

Coeff R2 = 0.9416560747789743

[19]: [<matplotlib.lines.Line2D at 0x21768d33£20>]

4.0

100

50 +

_5{} -

—100

[21]: from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
anitialisation du modéle
regression_model = LinearRegression()
regression_model.fit(x, y)

Prédiction

y_predicted = regression_model.predict(x)
Evaluation du modéle

rmse = mean_squared_error(y, y_predicted)
r2 = r2_score(y, y_predicted)

Affichage des wvaleurs

print("Pente : " ,regression_model.coef_)
print("Ordonnée & l'origine : ", regression_model.intercept_)
print("Racine carrée de 1l'erreur quadratique moyenne : ", rmse)

print('Sccore R2 : ', r2)

Tracée des wvaleurs

Points de données

plt.scatter(x, y, s=10)
plt.xlabel('x"')

plt.ylabel('y")

Valeurs prédites

plt.plot(x, y_predicted, color='r')

plt.show()

Pente : [42.61943029]

Ordonnée & 1l'origine : -0.8141818270307257

Racine carrée de l'erreur quadratique moyenne : 114.17148616819482
Sccore R2 : 0.9417294727711081

100

50 T

=50 7

—100 ~

