
I. Généralités : 

L'Analyse en Composantes Principales (ACP) est une technique statistique utilisée pour réduire la 

dimensionnalité d'un jeu de données tout en conservant un maximum d'information. Voici comment 

elle fonctionne : 

1. Objectif : L’ACP vise à transformer des variables potentiellement corrélées en un ensemble de 

nouvelles variables non corrélées appelées "composantes principales". Ces composantes sont 

des combinaisons linéaires des variables d'origine et capturent la variance maximale dans les 

données. 

2. Étapes clés : 

o Standardisation des données : Si les variables ont des unités différentes, il est 

recommandé de standardiser les données pour les rendre comparables. 

o Matrice de covariance : L'ACP calcule ensuite la matrice de covariance ou de 

corrélation entre les variables pour comprendre leur relation. 

o Valeurs propres et vecteurs propres : Les valeurs propres (qui mesurent la quantité de 

variance expliquée par chaque composante) et les vecteurs propres (qui définissent la 

direction des composantes principales) sont extraits de la matrice de covariance. 

o Projection des données : Les données d'origine sont projetées dans un nouvel espace 

défini par les composantes principales. Les premières composantes principales 

expliquent le plus de variance dans les données. 

3. Interprétation : 

o Les premières composantes principales contiennent l'essentiel de l'information du jeu 

de données. 

o Le nombre de composantes retenues dépend du pourcentage de variance totale que 

l'on souhaite conserver (souvent 80-90%). 

L'ACP est donc un outil puissant pour simplifier des jeux de données complexes tout en minimisant la 

perte d'information. 

Caractéristiques des composantes principales : 

• Composante principale 1 (CP1) : C’est la direction qui explique le maximum de variance dans 

les données. 

• Composante principale 2 (CP2) : C’est la direction perpendiculaire à CP1, qui explique la 

deuxième plus grande part de variance restante, et ainsi de suite. 

Ces composantes sont orthogonales entre elles, c’est-à-dire non corrélées. 

4. Interprétation : 

• Variance expliquée : Chaque composante principale est associée à une part de variance 

expliquée. Par exemple, si la première composante explique 70 % de la variance, cela signifie 

qu’elle capture 70 % de l’information présente dans les données d'origine. 

• Projection des données : Les données initiales peuvent être projetées sur les premières 

composantes principales pour visualiser les relations principales avec moins de dimensions. 



Typiquement, on utilise souvent les deux premières composantes pour faire une 

représentation en deux dimensions des données. 

5. Utilité de l'ACP : 

1. Réduction de la dimensionnalité : Elle permet de réduire le nombre de variables tout en 

gardant l’essentiel de l’information. 

2. Visualisation : En projetant les données sur les deux ou trois premières composantes 

principales, on peut facilement visualiser des données complexes en 2D ou 3D. 

3. Suppression de la redondance : L'ACP élimine la multicolinéarité entre les variables (les 

variables redondantes qui véhiculent la même information). 

II. Principe de l’ACP 

L’inertie d’un nuage de points = inertie totale = ∑ 𝑷𝒊𝒅
𝟐(𝒙𝒊, 𝒈)𝒊   (𝑔 𝑒𝑠𝑡 𝑙𝑒 𝑐𝑒𝑛𝑡𝑟𝑒 𝑑𝑒 𝑔𝑟𝑎𝑣𝑖𝑡é) 

Comme déjà mentionné l’objectif principal de l’ACP est la recherche d’un ensemble réduit de variables 

non corrélés qui sont des combinaisons linéaires des variables initiales et qui résume avec précision les 

variables initiales. En d’autres termes, la recherche d’un sous espace représentant au mieux le nuage 

initial. 

Nuage d’un points : Poids d’un individu en général égal a 1/N (N nombre d’individu), ∑ 𝑃𝑖 = 1
𝑁
𝑖=1  

Inertie : 𝑰𝑨/𝑩 = 𝑷𝑨𝒅
𝟐(𝑨,𝑩),  

𝑰𝑨/∆ = 𝑷𝑨𝒅
𝟐(𝑨, ∆) 

Inertie globale :  𝑰𝒈 = ∑ 𝒅𝟐(𝒆𝒊, 𝒈)
𝒏
𝒊=𝟏  

Rappel : 

𝒙𝟏 = (
𝒂
𝒃
) , 𝒙𝟐 = (

𝒂′
𝒃′
) ,𝑴 = 𝑰 (𝒎𝒂𝒕𝒓𝒊𝒄𝒆 𝒊𝒅𝒆𝒏𝒕𝒊𝒕𝒆) 

𝒅𝟐(𝒙𝟏, 𝒙𝟐) = (𝒂 − 𝒂
′)𝟐 + (𝒃 − 𝒃′)𝟐 = ‖𝒙𝟏 − 𝒙𝟐‖𝑴

𝟐 = (𝒙𝟏 − 𝒙𝟐)
𝒕𝑴(𝒙𝟏 − 𝒙𝟐) 

𝒗𝟏 (
𝒙
𝒚) , 𝒗𝟐 (

𝒙′
𝒚′
) 

Le produit scalaire de deux vecteurs ⟨𝒗𝟏, 𝒗𝟐⟩ = 𝒙𝒙
′ + 𝒚𝒚′ = 𝒗𝟏

𝒕 ⋅ 𝒗𝟐 

Les axes principaux d’inertie : 

 

 

 



𝑰𝜟𝒌 =∑𝒑𝒊𝒅𝑴
𝟐 𝒙𝒊 𝜟𝒌⁄ =∑𝒑𝒊(‖𝒙𝒊‖𝑴

𝟐 − ‖𝒙̂𝒊‖𝑴
𝟐 )

𝒏

𝒊=𝟏

=∑𝑷𝒊‖𝒙𝒊‖𝑴
𝟐

𝒏

𝒊=𝟏

−∑𝑷𝒊‖𝒙̂𝒊‖𝑴
𝟐

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

 

 

= ∑ 𝑷𝒊‖𝒙𝒊‖𝑴
𝟐𝒏

𝒊=𝟏
− ∑𝒑𝒊⟨𝒙𝒊′𝒖𝒌⟩𝑴

𝟐  

 

= ∑𝑃𝑖‖𝑥𝑖‖
2 − ∑𝑃𝑖⟨𝑥𝑖′𝑢𝑘⟩𝑀

𝑡 ⋅ ⟨𝑥𝑖′𝑢𝑘⟩𝑀 

=    ∑𝑃𝑖‖𝑥𝑖‖
2   −∑𝑝𝑖(𝑥𝑖𝑀𝑢𝑘)

𝑡(𝑥𝑖𝑀𝑢𝑘)   

= ∑𝑃𝑖‖𝑥𝑖‖
2 − ∑𝑃𝑖𝑢𝑘

𝑡𝑀𝑡𝑥𝑡𝑥𝑀𝑢𝑘                               Matrice V de variance covariance 

= ∑𝑃𝑖‖𝑥𝑖‖
2 − 𝑢𝑘

𝑡𝑀𝑡(∑𝑃𝑖𝑥
𝑡𝑥)𝑀𝑢𝑘 

=∑𝑃𝑖‖𝑥𝑖‖
2 − 𝑢𝑘

𝑡𝑀𝑡𝑉𝑀𝑢𝑘                        

Solution : 𝑢𝑘 vecteur propre de 𝑉𝑀 associe aux valeurs propres 𝜆𝑘,  𝑉𝑀𝑢𝑘 = 𝜆𝑘𝑢𝑘 

RQ : Les vecteurs propres forme une base orthonormée c-à-d :  

⟨𝒖𝒊, 𝒖𝒋⟩𝑴
= 𝒖𝒊

𝒕𝑴𝒖𝒋 = 𝟎  ∀𝒊 ≠ 𝒋, 𝒆𝒕 , ‖𝒖𝒊‖
𝟐 = ⟨𝒖𝒊

𝒕, 𝒖𝒊⟩𝑴 = 𝒖𝒊
𝒕𝑴𝒖𝒊 = 𝟏 

 

𝑰𝜟𝒌 = ∑𝑃𝑖‖𝑥𝑖‖
2 − 𝑢𝑘

𝑡𝑀𝑡𝜆𝑘𝑢𝑘                        

𝑰𝜟𝒌 = ∑𝑃𝑖‖𝑥𝑖‖
2 − (𝑢𝑘

𝑡𝑀𝑡𝑢𝑘)𝜆𝑘        (𝑢𝑘
𝑡𝑀𝑡𝑢𝑘 = 1) 

𝑰𝜟𝒌 = ∑𝑃𝑖‖𝑥𝑖‖
2 − 𝜆𝑘 

M est la métrique : 

Si les variables homogènes donc M est la matrice identité M=Id. 

Si les données hétérogènes, M=𝐷1/𝜎2 

III. Les étapes d’une ACP  

1/ Centrer le tableau : 

𝒙 = 𝒙 − 𝒙̅   (Données centrées dans le cas d’une ACP non normée) 

Ou bien 𝒙 =
𝒙−𝒙̅

𝝈𝒙
  (Données centrées-réduites dans le cas d’une ACP normée) 

𝑥̅ = 𝑔 =

∑ 𝑃𝑖𝑥𝑖𝑗
𝑛

𝑖=1

∑ 𝑃𝑖
𝑛
𝑖=1

 

Matrice de variance-covariance: 

𝑣 =
1

𝑁
𝑥𝑡𝑥 ( 𝑑𝑎𝑛𝑠 𝑙′𝐴𝐶𝑃 𝑛𝑜𝑟𝑚é𝑒 𝑒𝑠𝑡 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑒 𝑐𝑜𝑚𝑚𝑒 𝑚𝑎𝑡𝑟𝑖𝑐𝑒 𝑑𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 

 

L’inertie expliquée de l’axe uk 

A maximiser  



2/ Déterminer les axes principaux d’inertie : 

Recherche des valeurs propres 𝜆𝑘 et vecteurs propres 𝑢𝑘 

Det(𝑣𝑀 − 𝜆𝐼) = 0 

𝑉𝑀𝑈𝑘 = 𝜆𝑘𝑢𝑘 

RQ : 𝑻𝑹(𝒗𝑴) = ∑𝝀𝒊 

3/ Composantes principales : 

𝑪𝒌 = ⟨𝒙,𝒖𝒌⟩𝑴  

𝐶𝑘 =

(

 
 
 
 

𝐶𝑘
1

𝐶𝑘
2

.

.

.
𝐶𝑘
𝑛)

 
 
 
 

         𝐶𝑘
𝑖 = 𝑥𝑖

𝑡𝑀𝑢𝑘 

Remarque : 

𝒎𝒐𝒚(𝑪𝒌) = 𝟎 

𝑽𝒂𝒓(𝑪𝒌) = 𝝀𝒌 

𝒄𝒐𝒓𝒓(𝑪𝒊, 𝑪𝒋) = 𝒄𝒐𝒗(𝑪𝒊, 𝑪𝒋) = 𝟎 ∀𝒊, 𝒋  

4/ Qualité de représentation : 

𝜆𝑘   𝑒𝑛 𝑜𝑟𝑑𝑟𝑒 𝑑𝑒𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑘 

𝑄1 =
𝜆1
∑𝜆𝑖

≥ 80% 

Sinon 𝑄2 =
𝜆1+𝜆2

∑𝜆𝑖
≥ 80% 

5/ Contributions aux inerties : 

a. Part d’inertie de xi prise en compte par 𝚫𝒌(𝒖𝒌) 

𝐜𝐨𝐬𝟐 𝜽𝒊𝒌 =
(𝑪𝒌̇
𝒊 )
𝟐

‖𝒙𝒊‖𝑴
𝟐

 

 

b. Contribution relative d’un individu a l’inertie expliquée (𝝀𝒌) de l’axe 𝚫𝒌(𝒖𝒌) 

𝒄𝒐𝒏𝒕𝒊𝒌 =
𝑷𝒊(𝑪𝒌

𝒊 )
𝟐

𝝀𝒌
  A quel point un individu a servi à la création de l’axe 

𝜆𝑘 =∑𝑃𝑖(𝑐𝑘
𝑖 )
2
= 𝑃1(𝐶𝑘

1)
2
+ 𝑃2(𝐶𝑘

2)
2
+⋯+ 𝑃𝑛(𝐶𝑘

𝑛)2
𝑛

𝑖=1

 

 

 

‖𝑥‖2 𝑙𝑎 𝑣𝑎𝑙 𝑑𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑒 𝑥𝑖  

Sur (𝛥𝑘) 

 



 

6/ Description des variables 

Les composantes principales (𝐶𝑘) forment une base. 

La projection e la var (Xj) sur l’axe 𝐶𝑘 est le coefficient de corrélation entre 𝑥𝑗𝑒𝑡 𝐶𝑘  

𝑐𝑜𝑟(𝑥𝑗, 𝐶𝑘) =
𝑐𝑜𝑣(𝑥𝑗, 𝐶𝑘)

𝜎𝑥𝑗  𝜎𝐶𝑘
=  

∑𝑃𝑖𝑥𝑖𝑗𝐶𝑖𝑘

√∑𝑃𝑖𝑥𝑖𝑗
2 . √𝜆𝑘

 

−1 ≤ 𝑐𝑜𝑟 ≤ 1 

 

IV.  Exemple pratique : 

Supposons que vous ayez un jeu de données avec trois variables : hauteur, poids et âge pour un groupe 

d'individus. Si hauteur et poids sont fortement corrélés, l'ACP pourrait identifier une composante 

principale qui combine ces deux variables pour capturer leur contribution commune à la variance. La 

deuxième composante principale pourrait alors capturer la variance liée à l'âge, qui est moins corrélée 

aux deux autres variables. 

✓ Avantages et limites de l’ACP : 

Avantages : 

• Réduction de la complexité des données. 

• Identification des relations entre les variables. 

• Aide à la visualisation de grands jeux de données. 

Limites : 

• Les résultats sont parfois difficiles à interpréter, surtout si les composantes principales sont 

des combinaisons complexes des variables d’origine. 

• L'ACP est une méthode linéaire, elle peut ne pas bien capturer des relations non linéaires 

dans les données. 

En résumé, l’ACP est un outil puissant pour réduire la dimension des données, en maximisant la 

quantité d'information conservée dans un nombre réduit de variables (les composantes principales). 

Exemple d'ACP 

Imaginons que nous avons un petit ensemble de données sur trois étudiants avec des notes dans trois 

matières : Mathématiques, Physique et Informatique. Voici les notes de chaque étudiant (sur 20) : 

Étudiant Mathématiques Physique Informatique 

Étudiant 1 15 14 16 

Étudiant 2 12 10 11 

Étudiant 3 18 17 19 



Nous souhaitons appliquer l'ACP pour comprendre la relation entre ces matières et réduire 

potentiellement le nombre de variables à analyser. 

Étape 1 : Standardisation des données 

Les notes des trois matières ont des échelles similaires, mais il est tout de même possible de les 

standardiser (ACP normée) (moyenne = 0, écart-type = 1). Cela permet de rendre les variables 

comparables. Pour standardiser les données, on soustrait la moyenne et on divise par l’écart-type pour 

chaque variable. 

Étudiant Mathématiques (standardisé) Physique (standardisé) Informatique (standardisé) 

Étudiant 1 0.27 0.29 0.30 

Étudiant 2 -1.09 -1.17 -1.16 

Étudiant 3 0.82 0.88 0.87 

Étape 2 : Calcul de la matrice de covariance 

Nous calculons ensuite la matrice de covariance entre les variables (les matières). La covariance 

indique comment deux variables varient ensemble. Si la covariance est positive, cela signifie que les 

deux variables augmentent ou diminuent ensemble. 

Voici la matrice de covariance pour nos données : 

 Mathématiques Physique Informatique 

Mathématiques 1.0 0.99 0.99 

Physique 0.99 1.0 0.99 

Informatique 0.99 0.99 1.0 

On voit ici que les trois matières sont très corrélées entre elles (toutes les covariances sont proches de 

1). 

Étape 3 : Calcul des vecteurs propres et valeurs propres 

Les valeurs propres et vecteurs propres sont ensuite calculés à partir de la matrice de covariance. Ces 

vecteurs propres représentent les directions des composantes principales, et les valeurs propres nous 

disent combien de variance chaque composante principale explique. 

Voici les valeurs propres et les pourcentages de variance expliqués : 

• Composante principale 1 (CP1) : Valeur propre = 2.98 (explique environ 99.3 % de la variance 

totale). 

• Composante principale 2 (CP2) : Valeur propre = 0.02 (explique environ 0.6 % de la variance 

totale). 

• Composante principale 3 (CP3) : Valeur propre ≈ 0.00 (explique environ 0.1 % de la variance 

totale). 

 



Étape 4 : Interprétation des résultats 

• CP1 explique 99.3 % de la variance totale, ce qui signifie qu'elle capture presque toute 

l'information contenue dans les trois matières. Autrement dit, la majeure partie de la variation 

des notes des étudiants est résumée par une seule composante principale, ce qui est une 

combinaison linéaire des trois matières. 

• CP2 et CP3 n'ajoutent presque rien en termes de variance expliquée (0.6 % et 0.1 % 

respectivement). 

Étape 5 : Définition des composantes principales 

La première composante principale (CP1) est une combinaison des trois matières. Cela signifie que 

CP1 est une sorte de moyenne pondérée des trois matières. 

Étape 6 : Projection des données 

Maintenant, on peut projeter les notes des étudiants sur la première composante principale (CP1). 

Comme CP1 capture presque toute la variance, nous n'avons plus besoin de trois variables pour 

analyser les données, mais seulement une. 

Par exemple : 

Étudiant Projection sur CP1 

Étudiant 1 15.26 

Étudiant 2 10.51 

Étudiant 3 18.74 

Cela signifie que, même si nous avons trois matières initialement, une seule composante (CP1) capture 

presque toute l'information, ce qui simplifie l'analyse. 

Étape 7 : Visualisation 

En visualisant les étudiants sur l'axe de CP1, on pourrait voir à quel point ils se situent les uns par 

rapport aux autres en fonction de leur performance globale en mathématiques, physique et 

informatique. Il serait également possible de tracer un graphique avec CP1 et CP2, mais comme CP2 

n'explique que 0.6 % de la variance, il n'ajouterait pas beaucoup d'information. 

✓ Dans cet exemple, l’ACP a montré que les trois matières sont fortement corrélées, et qu’une 

seule composante principale suffit à expliquer presque toute la variance. Cela nous permettrait 

de simplifier notre analyse, en remplaçant les trois matières par une unique mesure 

synthétique qui résume les performances globales des étudiants. 

✓ L'ACP est ainsi un outil très utile pour réduire la dimensionnalité des jeux de données tout en 

conservant un maximum d’information. 

 

 


