l. Généralités :

L'Analyse en Composantes Principales (ACP) est une technique statistique utilisée pour réduire la
dimensionnalité d'un jeu de données tout en conservant un maximum d'information. Voici comment
elle fonctionne :

1. Objectif : UACP vise a transformer des variables potentiellement corrélées en un ensemble de
nouvelles variables non corrélées appelées "composantes principales". Ces composantes sont
des combinaisons linéaires des variables d'origine et capturent la variance maximale dans les
données.

2. Etapesclés:

o Standardisation des données : Si les variables ont des unités différentes, il est
recommandé de standardiser les données pour les rendre comparables.

o Matrice de covariance : L'ACP calcule ensuite la matrice de covariance ou de
corrélation entre les variables pour comprendre leur relation.

o Valeurs propres et vecteurs propres : Les valeurs propres (qui mesurent la quantité de
variance expliquée par chaque composante) et les vecteurs propres (qui définissent la
direction des composantes principales) sont extraits de la matrice de covariance.

o Projection des données : Les données d'origine sont projetées dans un nouvel espace
défini par les composantes principales. Les premiéres composantes principales
expliquent le plus de variance dans les données.

3. Interprétation:

o Les premieres composantes principales contiennent I'essentiel de I'information du jeu
de données.

o Le nombre de composantes retenues dépend du pourcentage de variance totale que
I'on souhaite conserver (souvent 80-90%).

L'ACP est donc un outil puissant pour simplifier des jeux de données complexes tout en minimisant la
perte d'information.

Caractéristiques des composantes principales :

e Composante principale 1 (CP1) : C’est la direction qui explique le maximum de variance dans
les données.

e Composante principale 2 (CP2) : C’est la direction perpendiculaire a CP1, qui explique la
deuxieme plus grande part de variance restante, et ainsi de suite.

Ces composantes sont orthogonales entre elles, c’est-a-dire non corrélées.
4. Interprétation :

e Variance expliquée : Chaque composante principale est associée a une part de variance
expliquée. Par exemple, si la premiére composante explique 70 % de la variance, cela signifie
gu’elle capture 70 % de I'information présente dans les données d'origine.

e Projection des données : Les données initiales peuvent étre projetées sur les premieres
composantes principales pour visualiser les relations principales avec moins de dimensions.



Typiquement, on utilise souvent les deux premiéres composantes pour faire une
représentation en deux dimensions des données.

5. Utilité de I'ACP :

1. Réduction de la dimensionnalité : Elle permet de réduire le nombre de variables tout en
gardant I'essentiel de I'information.

2. Visualisation : En projetant les données sur les deux ou trois premieres composantes
principales, on peut facilement visualiser des données complexes en 2D ou 3D.

3. Suppression de la redondance : L'ACP élimine la multicolinéarité entre les variables (les
variables redondantes qui véhiculent la méme information).

Il. Principe de ’ACP
U'inertie d’un nuage de points = inertie totale = ¥'; P;d?(x;, g) (g est le centre de gravité)

Comme déja mentionné l'objectif principal de 'ACP est la recherche d’un ensemble réduit de variables
non corrélés qui sont des combinaisons linéaires des variables initiales et qui résume avec précision les
variables initiales. En d’autres termes, la recherche d’un sous espace représentant au mieux le nuage
initial.

Nuage d’un points : Poids d’un individu en général égal a 1/N (N nombre d’individu), Zf’zlPi =1
Inertie : I,p = P,d*(A, B),

Ipyp = Pad?(A, 1)

Inertie globale : I, = Y1, d*(e;, g)

Rappel :

X = (Z),xz = (z:)M = I (matrice identite)

dz(xl,xz) = (a— a')z + (b — b')z = |[xq — x2||12w = (x1 — xz)tM(xl — X2)

n () v (5)

Le produit scalaire de deux vecteurs (v4,v,) = xx’' + yy' = v} - v,

Les axes principaux d’inertie :
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Solution : u,;, vecteur propre de VM associe aux valeurs propres Ay, VMu, = A,u;
RQ: Les vecteurs propres forme une base orthonormée c-a-d :

(u,-,u,-) = uiMu; = 0 Vi # j,et,|lwl® = (uj,w;), = uiMuy; = 1

Ly = YPillxi 1% — uf, M Ay,
Ly = ZPlxll? = @eMiw )y (weMuy, = 1)
Ly = ZPllx % —
M est la métrique :
Si les variables homogénes donc M est la matrice identité M=Id.
Si les données hétérogenes, M=D ;2
1l. Les étapes d’'une ACP
1/ Centrer le tableau :

x =x — X (Données centrées dans le cas d’'une ACP non normée)

. x—X , . . . .
Ou bien x = - (Données centrées-réduites dans le cas d’'une ACP normée)

X

n
= — l=
X=9="3yn p
i=11*1
Matrice de variance-covariance:

1
v= Nxtx (dans I'ACP normée est consideree comme matrice de correlation)



2/ Déterminer les axes principaux d’inertie :
Recherche des valeurs propres A, et vecteurs propres u;
Det(vM —AI) =0
VMU, = A uy
RQ:TR(vM) =} 4;
3/ Composantes principales :
Cr = (x,updy
Ck
Ci

Cr=1| - CL = x}f Muy,
\c}g/
Remarque :
moy(C,) =0
Var(C,) = A,
corr(C;,C;) = cov(C;, C;) = 0 Vi, j
4/ Qualité de représentation :

Ay enordre decroissant 1{ > 1, > -+ > A,

Q, = A_l > 80%
Y
A 42

2
7, = 80%

Sinon Q, =

5/ Contributions aux inerties :

a. Part d’inertie de x; prise en compte par A, (uy,)

ct
cos?0;, = (G
llx;]

12| la val de projection de x;

)2—/’ Sur (4g)

I

b. Contribution relative d’un individu a I'inertie expliquée (4;) de I'axe A (u;)

i\2
P;(c;
cont;, = %
k

A quel point un individu a servi a la création de I'axe

n
A = Z Pi(ch) = P(CL)* + P, (CR)" + - + Py (C)?

=1



6/ Description des variables
Les composantes principales (C;) forment une base.

La projection e la var (X/) sur I'axe Cy, est le coefficient de corrélation entre x/et Cj

. cov(x’,C > Pix;:C;
cor(xf,Ck) — ( k) — i*ij~ik
0. O
xj Ck ZPixiZj.,Mk
—1<cor<i
Iv. Exemple pratique :

Supposons que vous ayez un jeu de données avec trois variables : hauteur, poids et age pour un groupe
d'individus. Si hauteur et poids sont fortement corrélés, I'ACP pourrait identifier une composante
principale qui combine ces deux variables pour capturer leur contribution commune a la variance. La
deuxieme composante principale pourrait alors capturer la variance liée a I'age, qui est moins corrélée
aux deux autres variables.

v" Avantages et limites de I’ACP :
Avantages :

e Réduction de la complexité des données.

e Identification des relations entre les variables.

e Aide a la visualisation de grands jeux de données.
Limites :

e Les résultats sont parfois difficiles a interpréter, surtout si les composantes principales sont
des combinaisons complexes des variables d’origine.

e L'ACP est une méthode linéaire, elle peut ne pas bien capturer des relations non linéaires
dans les données.

En résumé, I’ACP est un outil puissant pour réduire la dimension des données, en maximisant la
guantité d'information conservée dans un nombre réduit de variables (les composantes principales).

Exemple d'ACP

Imaginons que nous avons un petit ensemble de données sur trois étudiants avec des notes dans trois
matiéres : Mathématiques, Physique et Informatique. Voici les notes de chaque étudiant (sur 20) :

Etudiant Mathématiques Physique Informatique
Etudiant 1 15 14 16
Etudiant 2 12 10 11

Etudiant 3 18 17 19



Nous souhaitons appliquer I'ACP pour comprendre la relation entre ces matieres et réduire
potentiellement le nombre de variables a analyser.

Etape 1 : Standardisation des données

Les notes des trois matiéres ont des échelles similaires, mais il est tout de méme possible de les
standardiser (ACP normée) (moyenne = 0, écart-type = 1). Cela permet de rendre les variables
comparables. Pour standardiser les données, on soustrait la moyenne et on divise par I'écart-type pour
chaque variable.

Etudiant Mathématiques (standardisé) Physique (standardisé) Informatique (standardisé)

Etudiant 1 0.27 0.29 0.30
Etudiant 2 -1.09 -1.17 -1.16
Etudiant 3 0.82 0.88 0.87

Etape 2 : Calcul de la matrice de covariance

Nous calculons ensuite la matrice de covariance entre les variables (les matiéres). La covariance
indigue comment deux variables varient ensemble. Si la covariance est positive, cela signifie que les
deux variables augmentent ou diminuent ensemble.

Voici la matrice de covariance pour nos données :

Mathématiques Physique Informatique

Mathématiques 1.0 0.99 0.99
Physique 0.99 1.0 0.99
Informatique 0.99 0.99 1.0

On voit ici que les trois matiéres sont tres corrélées entre elles (toutes les covariances sont proches de
1).

Etape 3 : Calcul des vecteurs propres et valeurs propres

Les valeurs propres et vecteurs propres sont ensuite calculés a partir de la matrice de covariance. Ces
vecteurs propres représentent les directions des composantes principales, et les valeurs propres nous
disent combien de variance chaque composante principale explique.

Voici les valeurs propres et les pourcentages de variance expliqués :

e Composante principale 1 (CP1) : Valeur propre = 2.98 (explique environ 99.3 % de la variance
totale).

e Composante principale 2 (CP2) : Valeur propre = 0.02 (explique environ 0.6 % de la variance
totale).

e Composante principale 3 (CP3) : Valeur propre = 0.00 (explique environ 0.1 % de la variance
totale).



Etape 4 : Interprétation des résultats

e CP1 expliqgue 99.3 % de la variance totale, ce qui signifie qu'elle capture presque toute
I'information contenue dans les trois matieres. Autrement dit, la majeure partie de la variation
des notes des étudiants est résumée par une seule composante principale, ce qui est une
combinaison linéaire des trois matieres.

e CP2 et CP3 n'ajoutent presque rien en termes de variance expliquée (0.6 % et 0.1 %
respectivement).

Etape 5 : Définition des composantes principales

La premiére composante principale (CP1) est une combinaison des trois matieres. Cela signifie que
CP1 est une sorte de moyenne pondérée des trois matieres.

Etape 6 : Projection des données

Maintenant, on peut projeter les notes des étudiants sur la premiére composante principale (CP1).
Comme CP1 capture presque toute la variance, nous n'avons plus besoin de trois variables pour
analyser les données, mais seulement une.

Par exemple :

Etudiant Projection sur CP1

Etudiant 1 15.26
Etudiant 2 10.51
Etudiant 3 18.74

Cela signifie que, méme si nous avons trois matiéres initialement, une seule composante (CP1) capture
presque toute l'information, ce qui simplifie I'analyse.

Etape 7 : Visualisation

En visualisant les étudiants sur lI'axe de CP1, on pourrait voir a quel point ils se situent les uns par
rapport aux autres en fonction de leur performance globale en mathématiques, physique et
informatique. Il serait également possible de tracer un graphique avec CP1 et CP2, mais comme CP2
n'explique que 0.6 % de la variance, il n'ajouterait pas beaucoup d'information.

v Dans cet exemple, ’ACP a montré que les trois matiéres sont fortement corrélées, et qu’une
seule composante principale suffit a expliquer presque toute la variance. Cela nous permettrait
de simplifier notre analyse, en remplagant les trois matiéres par une unique mesure
synthétique qui résume les performances globales des étudiants.

v" L'ACP est ainsi un outil trés utile pour réduire la dimensionnalité des jeux de données tout en
conservant un maximum d’information.



