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Données :

n individus observés sur p variables quantitatives.

L’A.C.P. permet d’explorer les liaisons entre variables et les 
ressemblances entre individus.

Résultats :

Visualisation des individus

(Notion de distances entre individus)

Visualisation des variables

(en fonction de leurs corrélations)

INTRODUCTION
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Mesurer la qualité des représentations obtenues :

critère global

critères individuels

« Donner des noms aux axes »

Expliquer la position des individus

Utilisation éventuelle de variables supplémentaires

(illustratives)

INTERPRÉTATION DES RÉSULTATS
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I. L’ANALYSE EN COMPOSANTES PRINCIPALES

LE PROBLÈME

1.    LES DONNÉES

p variables quantitatives observées sur n individus.

INDIVIDU =   Élément de Rp

VARIABLE = Élément de Rn
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On cherche à représenter le nuage des individus.

A chaque individu noté ei, on peut associer un point dans 
Rp = espace des individus. 

A chaque variable du tableau X est associé un axe de Rp.
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1

Impossible à
visualiser dès 
que p > 3.
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On cherche une représentation des n individus , dans un 
sous-espace Fk de Rp de dimension k ( k petit 2, 3 …; par 
exemple un plan)

Autrement dit, on cherche à définir k nouvelles variables 
combinaisons linéaires des p variables initiales qui feront 
perdre le moins d’information possible.

2.   PRINCIPE DE L’A.C.P.

Ces variables seront appelées «composantes principales », 

les axes qu’elles déterminent : « axes principaux »

les formes linéaires associées : « facteurs principaux »
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ON VISUALISE

X1

X2

Rp

Xi

axe 3

axe 1

axe 2

F3

axes principaux



8

« Perdre le moins d’information possible »

Fk devra être « ajusté » le mieux possible au nuage 
des individus: la somme des carrés des distances des  
individus à Fk doit être minimale.

Fk est le sous-espace tel que le nuage projeté ait une 
inertie (dispersion) maximale.

et sont basées sur les notions de : 

distance

projection orthogonale



9

e j

f j

f i
Δ 2

β i

β j

α i α j Δ 1

e i

La distance entre fi et fj est inférieure ou 
égale à celle entre ei et ej



10

3. LE CHOIX DE LA DISTANCE ENTRE INDIVIDUS

yB

yA

xA xB

A

B
Dans le plan:

( ) ( ) ( )d A B x x y yB A B A
2 2 2 , = − + −

Dans l’espace Rp à p dimensions, on généralise cette notion : la distance 
euclidienne entre deux individus s’écrit:

( )e xi i i i
p= 1 2 x  .  x.. ( )e xj j j j

p= 1 2 x  .  x..

( ) ( ) ( ) ( )d e e x x x x x xi j i j i j i
p

j
p2 1 1 2 2 2 2 2

  .  , ..= − + − + −

( ) ( )d e e x xi j i
k

j
k

k

p
2 2

1
 , = −

=
∑ Le problème des unités ?
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Pour résoudre ce problème, on choisit de transformer les données en 
données centrées-réduites.

L’observation        est alors remplacée par :xi
k

UNITÉS D’ÉCART TYPE: 

où :                moyenne de la variable Xk

sk      =    écart-type de la variable Xk

 x i
k − x
s

k

k

xk =

Exemple :
Puissance moyenne de 30 voitures = 92 ch     Ecart-type = 24 ch

La Renault 21 TXI a une puissance de 140 ch

La Renault 21 TXI a une puissance de :

2 écarts-type au-dessus de la moyenne.

140 92
24 2−

=



12

4.   INERTIE TOTALE

( )I n e gg i
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=
=
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I  p  d e , g
=

= ∑

ou de façon plus générale

L’inertie est la somme pondérée des carrés des distances des 
individus au centre de gravité

L’inertie mesure la dispersion totale du nuage de points.

g

n

i
i 1

p  =  1
=
∑avec
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L’inertie est donc aussi égale à la somme des variances 
des variables étudiées.

En notant V la matrice de variances-covariances :

V =
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⎜
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⎜
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12   s
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................

................

........ ⎞
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⎟
⎟
⎟
⎟
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Ig i
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p

=
=
∑  s2

1

( )I Tr Vg =

Remarque

Dans le cas où les variables sont centrées réduites, la 
variance de chaque variable vaut 1.

L’inertie totale est alors égale à p (nombre de variables).
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Équivalence des deux critères concernant la perte d’information

F g f i

ei

Soit F un sous-ensemble de Rp

la projection orthogonale de          sur F

Projection orthogonale du 
nuage sur un sous-espace

f i ei

e g e f f g ii i i i− = − + − ∀ =
2 2 2 1        .  n..
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On va chercher F tel que :

p e fi i i
i

n

  soit minimal−
=
∑ 2

1

ce qui revient d’après le théorème de Pythagore à maximiser :

p f gi i
i

n

 −
=
∑ 2

1
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e g e f f g ii i i i− = − + − ∀ =
2 2 2 1        .  n..

p e g p e f p f gi i
i

n

i i i
i

n

i i
i

n

=− − − −
= = =
∑ ∑ ∑2

1

2

1

2

1

Inertie totale minimiser cette
quantité (carrés

des distances entre
points individus et
leurs projections)

maximiser
l’inertie du

nuage projeté

⇔

Donc :
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II.   LA SOLUTION DU PROBLÈME POSÉ

La recherche d’axes portant le maximum d’inertie
équivaut à la construction de nouvelles variables 
(auxquelles sont associés ces axes) de variance maximale.

En d’autres termes, on effectue un changement de repère 
dans Rp de façon à se placer dans un nouveau système de 
représentation où le premier axe apporte le plus possible de 
l’inertie totale du nuage, le deuxième axe le plus possible 
de l’inertie non prise en compte par le premier axe, et ainsi 
de suite.

Cette réorganisation s’appuie sur la diagonalisation de la 
matrice de variances-covariances.
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1.   SOLUTION

Axes principaux

On appelle axes principaux d’inertie les axes de direction 
les vecteurs propres de V normés à 1.

Il y en a p.

Le premier axe est celui associé à la plus grande valeur 
propre . On le note u1

Le deuxième axe est celui associé à la deuxième valeur 
propre . On le note u2

...
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Composantes principales

À chaque axe est associée une variable appelée composante 
principale.

La composante c1 est le vecteur renfermant les cordonnées 
des projections des individus sur l’axe 1.

La composante c2 est le vecteur renfermant les cordonnées 
des projections des individus sur l’axe 2.

Pour obtenir ces coordonnées, on écrit que chaque 
composante principale est une combinaison linéaire des 
variables initiales.

Exemple

c u x u x xp
p1

1
1 1

2
1 2 1= + +   ...  u  
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2.   PROPRIÉTÉS DES COMPOSANTES PRINCIPALES

La variance d’une composante principale est égale à
l’inertie portée par l’axe principal qui lui est associé.

1ère composante c1 variance : 

2ème composante c2 variance : 

3ème composante c3 variance : 

Les composantes principales sont non corrélées 
deux à deux.

En effet, les axes associés sont orthogonaux.

λ1

3λ
2λ
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3.   REPRÉSENTATION DES INDIVIDUS

La jème composante principale                            fournit les 

coordonnées des n individus sur le jème axe principal.

Si on désire une représentation plane des individus, la 
meilleure sera celle réalisée grâce aux deux premières 
composantes principales.

c
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Attention à la qualité de représentation de chaque individu!
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4.   REPRÉSENTATION DES VARIABLES

Les « proximités » entre les composantes principales et les 
variables initiales sont mesurées par les covariances, et surtout 
les corrélations.

est le coefficient de corrélation linéaire entre     et( )r c xj i, c j xi

( )r c xi2 ,

c2

c1

xi

( )r c xi1,

CERCLE DES CORRÉLATIONS
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5.   INTERPRETATION DES « PROXIMITÉS » ENTRE 
VARIABLES

On utilise un produit scalaire entre variables permettant 
d’associer aux paramètres courants : écart-type, coefficient 
de corrélation linéaire des représentations géométriques.

n
i j i j

k k
k 1

1x , x  x  x
n =

= ∑

On suppose les variables centrées.
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( )
n2 2i i i i

k
k 1

1x x , x  x
n =

= = ∑

2i 2
ix s= x i

Variance de

i
ix s= Écart-type  de x i

( )i j i jx , x Cov x , x=
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Coefficient de corrélation linéaire

( ) ( ) ( )
i ji j

i j i j
i j

i j

Cov X ,Xx , x
Cos X ,X r X ,X

s  sX  X
= = =

Le cosinus de l’angle formé par les variables Xi et Xj est le 
coefficient de corrélation linéaire de ces deux variables
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X3

X1

X2

X4

X5
X6

X1 et X2 ont une 
corrélation proche de 1.

X1 et X3 ont une 
corrélation proche de 0.

CERCLE DES CORRÉLATIONS
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III.   VALIDITÉ DES REPRÉSENTATIONS

1.   CRITÈRE GLOBAL

mesure la part d’inertie expliquée par l’axe i.

Exemple :

est la part d’inertie expliquée par le premier plan   principal. 

Ce critère (souvent exprimé en pourcentage) mesure le degré de 
reconstitution des carrés des distances.

La réduction de dimension est d’autant plus forte que les 
variables de départ sont plus corrélées. 

λ
λ λ λ

i

p1 2+ +  ...  

λ λ

λ

1 2

1

+

=
∑ i
i

p
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Combien d’axes ?

Différentes procédures sont complémentaires:

Pourcentage d’inertie souhaité : a priori

Diviser l’inertie totale par le nombre de variables initiales

inertie moyenne par variable : I.M.

Conserver tous les axes apportant une inertie supérieure à cette valeur I.M. 
(inertie > 1 si variables centrées réduites).

Histogramme . . .
. . . .1

2

3

4

λ1 λ2 λ 3 λ4 λ5 λ 6 λ7

cassure

λ1
λ2

λ 3

= 4,5
= 3,8
= 2,9

Conserver les axes associés 
aux valeurs propres situées
avant la cassure.
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cos cos cos2 2
1

2
2θ θ θ= +

ei

f i

axe 1

axe 2

y

θ2

θ
θ1

2. CRITÈRES INDIVIDUELS

Cosinus carrés
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Pour chaque individu , la qualité de sa représentation est définie 
par le carré du cosinus de l’angle entre l’axe de projection et le 
vecteur     . Plus la valeur est proche de 1, meilleure est la 
qualité de représentation

En général, les qualités de représentation sont données axe par 
axe. Pour avoir la qualité de représentation dans un plan, on 
additionne les critères correspondant aux axes étudiés.

Ce critère n’a pas de signification pour les individus proches 
de l’origine.

Quand on détecte un individu pour lequel le cosinus carré est 
faible, on doit tenir compte de sa distance à l’origine avant 
d’indiquer qu’il est mal représenté

ei
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Contributions

Il est très utile aussi de calculer pour chaque axe la contribution 
apportée par les divers individus à cet axe.

Considérons la kième composante principale   , soit       la valeur 
de la composante pour le ième individu.

ck ci
k

( )  1
1

2

n c
i

n

i
k

k
=
∑ = λ

La contribution de l’individu  

à la composante n° k est définie par
( )1 2

n ci
k

k

 
λ

ei
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Remarque :

Il n’est pas souhaitable qu’un individu ait une contribution 
excessive (car facteur d’instabilité) éliminer les individus 
dont la contribution est trop importante.

Problème des  enquêtes par sondage
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c2

c1

3.   REPRÉSENTATION DES VARIABLES

Le cercle des corrélations est la projection du nuage des 
variables sur le plan des composantes principales.

corrélation = cosinus

Les variables bien représentées 
sont celles qui sont proches du 
cercle, celles qui sont proches de 
l’origine sont mal représentées.
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4.   INTERPRÉTATION EXTERNE : VARIABLES

ET INDIVIDUS SUPPLÉMENTAIRES (ILLUSTRATIFS)

4.1 Variables

•Variable quantitative:

On calcule le coefficient de corrélation entre la   variable 
supplémentaire et les composantes principales.

Ceci permet sa représentation sur le cercle des corrélations.
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Variable qualitative

Identification des individus 
de chaque catégorie de la 
variable

Représentation de chaque 
catégorie par son centre 
de gravité.

Calcul du rapport de corrélation entre la variable qualitative 
supplémentaire et chaque composante principale (test de 
Fischer-Snedecor) ou valeur-test dans SPAD.
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Individu de poids nul ne participant pas à l’analyse (fichier 
test).

Appliquer aux coordonnées de l’individu les expressions 
définissant les composantes principales.

Individus


