Let’s apply some basics on linear regression :

# Loading Libraries

from sklearn.linear model import LinearRegression

from sklearn.datasets import make_regression

# Generation of a feature matrix and a target vector

teatures, target = make_regression(n_samples = 108,
n_features = 3,
n_informative = 2,
n_targets = 1,
noise = 0.2,
coef = False,
random_state = 1)

# Creation of linear regression

regression = LinearRegression()

#Linear Regression Fit
model = regression.fit(features,target)

#intercept
model.intercept

# Coefficients
model.coef

#First value in the target vector
target|9]

#Prediction of the target value of the first observation
model.predict(features)|[o]

#Display of the model's score on training data
print(model.score(features,target))

Problem: You have a characteristic whose effect on the target variable depends on another
characteristic.

Solution: create an interaction term to capture this dependency using PolynomialFeatures de scikit-
learn



#Libraries

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import PolynomialFeatures

from sklearn.datasets import make_regression

# Generation of a feature matrix and a target vector

features, target = make_regression(n_samples = 100,
n_features = 2,
n_informative = 2,
n_targets = 1,
noise = 0.2,
coef = False,
random state = 1)

#Creating an interaction term
interaction = PolynomialFeatures(degree=3 , include_bias=False , interaction_only=True)
features interaction = interaction.fit transform(features)

# Linear regression creation
regression = LinearRegression()

# Linear Regression Fit
model = regression.fit(features_interaction,target)

#print caracteristics of the first observation
features|[o]

Problem: You want to model with a nonlinear relationship.

Solution : Create a polynomial regression by including polynomial features in a linear regression
model

#lLibraries

from sklearn.linear _model import LinearRegression

from sklearn.preprocessing import PolynomialFeatures

from sklearn.datasets import make regression

# Generation of a feature matrix and a target vector

features, target = make regression(n_samples = 100,
n_features = 3,
n_informative = 2,
n_targets = 1,
noise = 0.2,
coef = False,
random_state = 1)

#Creating a polynomial caracteristics x~2 x*3
polynomial = PolynomialFeatures(degree=3 , include bias=False)
features_polynomial = polynomial.fit transform(features)

# Linear regression creation
regression = LinearRegression()

# Linear Regression Fit
model = regression.fit(features_polynomial,target)

#print caracteristics of the first observation
features|[9]



Reducing variance through regularisation

Problem : You want to reduce the variance of your linear regression model
Solution: Use a learning algorithm that includes a regularization such as Ridge regression or Lasso
regression.

# Loading libraries

from sklearn.linear model import Ridge

from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make regression

# Generation of a feature matrix and a target vector

features, target = make regression(n_samples = 100,
n_features = 3,
n_informative = 2,
n_targets = 1,
noise = 0.2,
coef = False,
random_state = 1)

# Standardisation of characteristics

scaler = Standardscaler()

features_standardized = scaler.fit transform(features)

# Creation of Ridge Regression with alpha
regresion = Ridge(alpha=e.5)

# Fit regression
model = regression.fit(features_standardized, target)

Scikit-learn offer RidgeCV to determine the best value of alpha



# Loading Llibraries

from sklearn.linear model import Ridge

from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make regression

# Generation of a feature matrix and a target vector

features, target = make regression(n_samples = 1@,
n_features = 3,
n_informative = 2,
n_targets = 1,
noise = 0.2,
coef = False,
random_state = 1)

# Standardisation of characteristics

scaler = Standardscaler()

features_standardized = scaler.fit transform(features)

# Loading Llibraries
from sklearn.linear_model import RidgeCV

# create ridge regression with 3 alpha
regr_cv = RidgeCV(alphas=[0.1, 1.0, 10.0])

#fit Llinear regression
model cv = regr _cv.fit(features standardized, target)

# print coefficients
model cv.coef

# print best value
model cv.alpha

Problem: Characteristics reduction to simplify the regression model

Solution: Use of Lasso



# Loading Llibraries

from sklearn.linear model import Lasso

from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_regression

# Generation of a feature matrix and a target vector

features, target = make regression(n_samples = 160,
n_features = 3,
n_informative = 2,
n_targets = 1,
noise = 0.2,
coef = False,
random_state = 1)

# Standardisation of characteristics

scaler = Standardscaler()

features_standardized = scaler.fit transform(features)

#fit Linear regression
regression = Lasso(alpha=8.5)
model = regression.fit(features standardized, target)

# print coefficients
model.coef_



TP : Prédiction du Prix des Maisons avec Régression Linéaire et Régularisation
Objectif :

L'objectif de ce TP est d'appliquer les techniques de régression linéaire sur une base de données réelle,
en explorant les termes d'interaction, la régression polynomiale et la régularisation (Ridge, Lasso).

Données :

Nous utiliserons la base de données fetch_california_housing de sklearn.datasets, qui contient des
informations sur les prix de I'immobilier a Boston.

1. Chargement et Exploration des Données
1. Importer les bibliothéques nécessaires (numpy, pandas, matplotlib, seaborn, sklearn)
2. Charger la base de données, visualiser les données.
2. Préparation des Données
1. Séparer les features (X) et la variable cible (y)
2. Normaliser les features pour améliorer |'apprentissage
3. Diviser les données en un ensemble d'entrainement et de test (80% - 20%)
3. Régression Linéaire Simple
1. Entrainer un modéle de régression linéaire
2. Calculer I'erreur quadratique moyenne (MSE)
3. Analyser les performances du modele
4. Ajout de Termes d'Interaction et Régression Polynomiale
1. Créer des termes d'interaction avec PolynomialFeatures de Scikit-Learn
2. Tester une régression polynomiale d'ordre 2 et comparer avec la régression linéaire
3. Observer les effets sur les performances
5. Régularisation : Ridge et Lasso

1. Entrainer une régression Ridge en utilisant RidgeCV pour trouver le meilleur hyperparametre
alpha

2. Faire de méme avec Lasso (LassoCV)
3. Comparer les coefficients des modeles Ridge et Lasso
4. Observer la sélection de variables par Lasso

6. Comparaison et Conclusion
1. Comparer les performances des différents modeles
2. Discuter des avantages de chaque approche

3. Analyser les meilleures méthodes pour prédire les prix immobiliers



