
Introduction – Pourquoi devez-vous lire ce livre ?

1
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Introduction – Pourquoi devez-vous lire ce livre ?

2
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Introduction – Pourquoi devez-vous lire ce livre ?

3
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Table des matières

Introduction – Pourquoi devez-vous lire ce livre ? .. 4

Qui suis-je ?... 6
Ce que vous allez apprendre dans les 7 prochains jours ... 6

Chapitre 1 : Les fondations du Machine Learning ... 8

Comprendre pourquoi le Machine Learning est utilisé ... 9
Laisser la Machine apprendre à partir d’expériences.. 11
L’Apprentissage Supervisé ... 12
Autres méthodes d’apprentissage ... 17
Les 4 notions clefs du Machine Learning que vous devez absolument retenir ... 18

Chapitre 2 : La Régression Linéaire ... 19

Petit rappel : Apprentissage Supervisé et problème de Régression ... 20
Apprenez votre premier modèle linéaire ... 20
Résumé des étapes pour développer un programme de Régression Linéaire .. 28

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist ! 29

Installer Python Anaconda : le meilleur outil de Machine Learning ... 30
Apprenez la programmation en 15 minutes ... 32
Développer enfin votre premier programme de Machine Learning .. 38
Résumé de ce Chapitre .. 46

Chapitre 4 : Régression Logistique et Algorithmes de Classification................................... 47

Les problèmes de Classification ... 48
Le modèle de Régression logistique ... 49
Développer un programme de classification binaire dans Jupyter .. 53
L’Algorithme de Nearest Neighbour ... 55
Vision par ordinateur avec K-NN dans Jupyter ... 58

Chapitre 5 : Réseaux de Neurones .. 61
Introduction aux Réseaux de Neurones ... 62
Programmer votre premier Réseau de Neurones pour identifier des espèces d’Iris. 68
Résumé de l’apprentissage supervisé .. 69

Chapitre 6 : Apprentissage Non-Supervisé ... 70

Unsupervised Learning .. 71
Algorithme de K-Mean Clustering .. 73
Programmer un K-Mean Clustering .. 74

Chapitre 7 : Comment gérer un projet de Machine Learning .. 77
L’erreur que font la majorité des Novices .. 78
Le plus important, ce n’est pas l’algorithme, ce sont les Données .. 79
Over fitting et Régularisation ... 83
Diagnostiquer un modèle de Machine Learning ... 87
Cycle de développement du Machine Learning .. 91

CONCLUSION .. 93

Lexique : Formule Résumé du Machine Learning ... 94

Introduction – Pourquoi devez-vous lire ce livre ?

4
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Introduction – Pourquoi devez-vous lire
ce livre ?

En 2019, Le Machine Learning est tout autour de nous. Il intervient

chaque fois que nous cherchons un mot dans Google, une série sur Netflix,

une vidéo sur YouTube, un produit sur Amazon.

Grâce au Machine Learning, des millions de cancers peuvent être

diagnostiqués chaque année, des milliards de spams et de virus

informatiques sont bloqués pour protéger nos ordinateurs, et sans lui la

voiture autonome n’existerait peut-être jamais.

Pourtant le grand public, qui lui donne à tort le nom « Intelligence

Artificielle », en ignore presque tout. Et il est bien connu que l’Homme a

peur de ce qu’il ne comprend pas.

En lisant ce guide, je vous invite à un voyage qui va vous permettre de

briser la glace avec l’Intelligence Artificielle et d’apprendre réellement une

nouvelle compétence professionnelle : Le Machine Learning.

Introduction – Pourquoi devez-vous lire ce livre ?

5
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Après avoir lu ce guide, vous ferez partie des pionniers d’un nouveau

monde, vous donnant accès à des opportunités professionnelles

extraordinaires, et vous aurez développé votre capacité à résoudre des

problèmes.

Quel que soit votre métier (Ingénierie, Marketing, Finance, ou même

artiste) ce livre vous sera utile, j’en suis convaincu.

Harvard Business Review, 2012

Salaire de base moyen pour un Data Scientist à Paris. Glassdoor, 2019.

Introduction – Pourquoi devez-vous lire ce livre ?

6
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Qui suis-je ?

Je m’appelle Guillaume Saint-Cirgue et je suis ingénieur en Machine

Learning au Royaume-Uni.

J’exerce ce métier alors que, comme

vous peut-être, je n’ai pas eu la

chance de recevoir des cours

d’Intelligence Artificielle au lycée, ni

même dans les études supérieures.

J’ai dû tout apprendre de moi-même,

en investissant mon temps et mon

argent dans des formations du MIT et

de Stanford et en passant des week-

end entiers à développer mes propres

projets.

Mais passionné par le Machine Learning, il n’a pas été difficile de laisser

de côté les distractions pour me consacrer à mon développement

personnel.

A travers ce guide, je veux vous offrir ce que j’ai appris car le monde a

urgemment besoin de se former en Intelligence Artificielle.

Que vous souhaitiez changer de vie, de carrière, ou bien développer vos

compétences à résoudre des problèmes, ce livre vous y aidera.

C’est votre tour de passer à l’action !

Ce que vous allez apprendre dans les 7 prochains

jours

J’ai écrit ce livre en 7 chapitres qui retracent le cheminement naturel et

logique pour apprendre le Machine Learning sans aucun prérequis.

Je vous invite à lire un chapitre par jour, ce qui ne vous prendra pas plus

d’une demi-heure par jour.

Pour chaque chapitre, je me suis inspiré des meilleures formations qui

existent à ce jour (parfois payantes) et que j’ai pu suivre (Stanford, MIT,

UCL, …).

Introduction – Pourquoi devez-vous lire ce livre ?

7
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Jour 1 : Les fondations du Machine Learning

Jour 2 : La Régression Linéaire

Jour 3 : Votre premier programme de Machine Learning

Jour 4 : La Régression Logistique et les Algorithmes de Classification

Jour 5 : Les Réseaux de Neurones

Jour 6 : Unsupervised Learning

Jour 7 : Comment gérer un projet de Machine Learning

En avant pour ce voyage qui changera peut-être votre vie comme il a pu

changer la mienne !

Chapitre 1 : Les fondations du Machine Learning

8
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Chapitre 1 : Les
fondations du Machine

Learning

Dans ce premier chapitre, nous allons voir :

• Pourquoi le Machine Learning est vraiment utile

• La définition du Machine Learning

• Les 3 méthodes d’apprentissage

• Les 2 applications les plus courantes en Machine Learning

• Les 4 notions clefs qui s’appliquent à tout le Machine Learning

Chapitre 1 : Les fondations du Machine Learning

9
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Comprendre pourquoi le Machine Learning est

utilisé

Pour comprendre au mieux ce qu’est le Machine Learning et comment cela

fonctionne, il faut commencer par comprendre pourquoi il est utilisé.

Nous, les êtres humains, sommes quotidiennement confronté à des

problèmes que nous cherchons à résoudre. Par exemple : Comment

construire un pont plus solide ? Comment augmenter nos bénéfices ?

Comment éliminer le cancer ? Ou tout simplement quelle route emprunter

pour aller au travail ?

PROBLEME A RESOUDRE

Pour nous aider dans nos recherches, nous avons inventé l’ordinateur,

qui permet de résoudre en quelques minutes des calculs qui nous

prendraient des millions d’années à effectuer. Mais il faut savoir qu’un

ordinateur ne sait en réalité faire qu’une chose : résoudre les calculs

qu’on lui donne.

Chapitre 1 : Les fondations du Machine Learning

10
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

À partir de là, 2 situations possibles :

1. On connait le calcul à effectuer pour résoudre notre problème.

Dans ce cas, facile ! On entre ce calcul dans l’ordinateur, c’est

ce qu’on appelle la programmation, et l’ordinateur nous

donne le résultat.

Exemple :

• Déterminer la structure d’un pont

2. On ne connait pas le calcul qui résout notre problème

Dans ce cas... on est bloqué. Impossible de donner à un

ordinateur un calcul que nous ne connaissons pas.

C’est comme vouloir poster une lettre que nous

n’aurions pas écrite.

Exemples :

• Reconnaitre un visage sur une photo

• Prédire le cours de la Bourse

• Eliminer le cancer

• Composer de la musique

• Conduire une voiture

Doit-on donc perdre tout espoir de voir un jour un ordinateur nous aider

dans la lutte contre le cancer ?

Bien sûr que non ! Le Machine Learning a justement été inventé pour

venir débloquer la situation 2 (quand on ne connait pas le calcul) en

utilisant une technique audacieuse, que je vais vous dévoiler tout de

suite.

Chapitre 1 : Les fondations du Machine Learning

11
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Laisser la Machine apprendre à partir

d’expériences

Le Machine Learning consiste à laisser l’ordinateur apprendre quel calcul

effectuer, plutôt que de lui donner ce calcul (c’est-à-dire le programmer

de façon explicite).

C’est en tout cas la définition du Machine Learning selon son inventeur

Arthur Samuel, un mathématicien américain qui a développé un

programme pouvant apprendre tout seul comment jouer aux Dames en

1959.

“Machine Learning is the science of
getting computers to learn without
being explicitly programmed.”
Arthur Samuel, 1959.

Un autre américain du nom de Tom Mitchell donna en 1998 une définition

un peu plus moderne du Machine Learning en énonçant qu’une machine

apprend quand sa performance à faire une certaine tâche s’améliore avec

de nouvelles expériences.

Mais comment apprendre ?

Pour donner à un ordinateur la capacité d’apprendre, on utilise des

méthodes d’apprentissage qui sont fortement inspirées de la façon

dont nous, les êtres humains, apprenons à faire des choses. Parmi ces

méthodes, on compte :

• L’apprentissage supervisé (Supervised Learning)

• L’apprentissage non supervisé (Unsupervised Learning)

• L’apprentissage par renforcement (Reinforcement

Learning)

Voyons dès à présent ce qu’est l’apprentissage supervisé, qui est la

méthode la plus utilisée en Machine Learning.

Chapitre 1 : Les fondations du Machine Learning

12
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

L’Apprentissage Supervisé

Imaginez que vous commenciez à apprendre le chinois.

Pour ce faire, il vous faudra soit acheter un livre de traduction chinois-

français, ou bien trouver un professeur de chinois.

CHIEN

Le rôle du professeur ou du livre de traduction sera de superviser votre

apprentissage en vous fournissant des exemples de traductions français-

chinois que vous devrez mémoriser.

On parle ainsi d’apprentissage supervisé lorsque l’on fournit à une

machine beaucoup d’exemples qu’elle doit étudier.

Pour maîtriser l’apprentissage supervisé, il faut absolument comprendre

et connaitre les 4 notions suivantes :

• Le Dataset

• Le Modèle et ses paramètres

• La Fonction Coût

• L’Algorithme d’apprentissage

Notion 1 : Apprendre à partir d’exemples (Dataset)

Comme pour apprendre la langue chinoise, on parle d’apprentissage

supervisé lorsque l’on fournit à une machine beaucoup d’exemples (𝒙, 𝒚)

dans le but de lui faire apprendre la relation qui relie 𝒙 à 𝒚.

CHIEN

YX

Chapitre 1 : Les fondations du Machine Learning

13
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

En Machine Learning, on compile ces exemples (𝒙, 𝒚) dans un tableau

que l’on appelle Dataset :

• La variable 𝒚 porte le nom de target (la cible). C’est la

valeur que l’on cherche à prédire.

• La variable 𝒙 porte le nom de feature (facteur). Un facteur

influence la valeur de 𝒚, et on a en général beaucoup de

features (𝒙𝟏, 𝒙𝟐, …) dans notre Dataset que l’on regroupe

dans une matrice 𝑿.

Ci-dessous, un Dataset qui regroupe des exemples d’appartements avec

leur prix 𝒚 ainsi que certaines de leurs caractéristiques (features).

Ce Dataset, 99.9% des gens se contentent de l’analyser dans Excel. La

bonne nouvelle, c’est que vous ferez bientôt partie des 0.1% de gens qui

peuvent faire du Machine Learning avec ça !

Chapitre 1 : Les fondations du Machine Learning

14
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Notion 2 : Développer un modèle à partir du Dataset

En Machine Learning, on développe un modèle à partir de ce Dataset. Il

peut s’agir d’un modèle linéaire comme vous pouvez le voir à gauche, ou

bien un modèle non-linéaire comme vous pouvez le voir à droite. Nous

verrons dans ce livre comment choisir un modèle plutôt qu’un autre.

On définit 𝒂, 𝒃, 𝒄, etc. comme étant les paramètres d’un modèle.

Notion 3 : Les erreurs de notre modèle - la Fonction

Coût

Autre chose à noter est qu’un modèle nous retourne des erreurs par

rapport à notre Dataset. On appelle Fonction Coût l’ensemble de ces

erreurs (le plus souvent on prend la moyenne quadratique des erreurs

comme dans le chapitre 2).

Chapitre 1 : Les fondations du Machine Learning

15
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Allons droit au but : Avoir un bon modèle, c’est avoir un modèle qui nous

donne de petites erreurs, donc une petite Fonction Coût.

Notion 4 : Apprendre, c’est minimiser la Fonction Coût

Ainsi l’objectif central en Supervised Learning, c’est de trouver les

paramètres du modèle qui minimisent la Fonction Coût. Pour cela, on

utilise un algorithme d’apprentissage, l’exemple le plus courant étant

l’algorithme de Gradient Descent, que vous apprendrez dans le chapitre

2.

Les applications du Supervised Learning

Avec le Supervised Learning on peut développer des modèles pour

résoudre 2 types de problèmes :

• Les problèmes de Régression

• Les problèmes de Classification

Dans les problèmes de régression, on cherche à prédire la valeur d’une

variable continue, c’est-à-dire une variable qui peut prendre une infinité

de valeurs. Par exemple :

• Prédire le prix d’un appartement (𝑦) selon sa surface

habitable (𝑥)

Chapitre 1 : Les fondations du Machine Learning

16
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

• Prédire la quantité d’essence consommée (𝑦) selon la

distance parcourue (𝑥)

Dans un problème de classification, on cherche à classer un objet dans

différentes classes, c’est-à-dire que l’on cherche à prédire la valeur d’une

variable discrète (qui ne prend qu’un nombre fini de valeurs). Par

exemple :

• Prédire si un email est un spam (𝑐𝑙𝑎𝑠𝑠𝑒 𝑦 = 1) ou non

(𝑐𝑙𝑎𝑠𝑠𝑒 𝑦 = 0) selon le nombre de liens présent dans l’email

(𝑥)

• Prédire si une tumeur est maligne (𝑦 = 1) ou bénigne (𝑦 =

0) selon la taille de la tumeur (𝒙𝟏) et l’âge du patient (𝒙𝟐)

Dans le cas d’un problème de classification, on représente souvent les

classes par des symboles, plutôt que par leur valeur numérique (0, 1, …)

Régression Classification

Mais tout ça, on peut le faire dans Excel ?

A ce stade, vous pourriez penser que calculer le prix d’un appartement

selon sa surface habitable, tout le monde peut le faire dans Excel (Il

existe même la fonction Régression dans Excel).

La force du Machine Learning, c’est qu’il est très facile de développer des

modèles très complexes qui peuvent analyser des milliers de features (𝑥)

qu’un être humain ne serait pas capable de prendre en compte pour

faire son calcul (et Excel non plus).

Chapitre 1 : Les fondations du Machine Learning

17
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Par exemple, pour prédire le prix d’un appartement (𝑦), un modèle de

Machine Learning peut prendre en compte :

• sa surface (𝒙𝟏)

• sa localisation (𝒙𝟐)

• sa qualité (𝒙𝟑)

• sa proximité avec un parc (𝒙𝟒)

• etc.

De même, pour prédire si un email est un spam (𝑦), le Machine Learning

peut analyser :

• le nombre de liens (𝒙𝟏)

• le nombre de fautes d’orthographe (𝒙𝟐)

• etc.

Plus il y a de features disponibles, plus il existe d’informations pour que le

modèle prenne des décisions ‘intelligentes’, c’est l’intelligence artificielle.

Autres méthodes d’apprentissage

Vous connaissez désormais l’apprentissage supervisé, qui s’inspire de la

façon dont nous, les êtres humains, pourrions apprendre une langue

comme le chinois en étudiant à l’aide d’un bouquin les associations

français → chinois (𝑥 → 𝑦).

Pourtant, si vous vous perdez, seul, en Chine, sans bouquin, sans

traducteur, il existe tout de même une méthode pour apprendre le

chinois. C’est l’apprentissage non-supervisé, et je vous dévoilerai

comment réussir cet exploit dans le chapitre 6.

Finalement, une 3ième méthode d’apprentissage assez populaire en

robotique est l’apprentissage par renforcement.

Cette dernière méthode s’inspire de la façon dont nous éduquons nos

animaux de compagnie, en leur offrant une friandise quand ils font une

bonne action. Cette méthode étant mathématiquement plus avancée que

les deux premières, je n’en parlerai pas dans ce livre, mais je vous invite

à lire mon site si vous souhaitez en savoir plus !

Chapitre 1 : Les fondations du Machine Learning

18
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Les 4 notions clefs du Machine Learning que vous

devez absolument retenir

Le Machine Learning est un domaine vaste et complexe, et de mon

expérience les gens perdent parfois de vue l’essentiel, même en suivant

des formations payantes.

Pour sortir du lot, il faut avoir les idées claires sur les bases du Machine

Learning. Vous devez ainsi retenir 4 notions essentielles, et vous verrez

qu’elles vous suivront dans tous vos projets de Machine Learning.

1. Le Dataset

En Machine Learning, tout démarre d’un Dataset qui contient nos

données. Dans l’apprentissage supervisé, le Dataset contient les

questions (𝑥) et les réponses (𝑦) au problème que la machine doit

résoudre.

2. Le modèle et ses paramètres

A partir de ce Dataset, on crée un modèle, qui n’est autre qu’une

fonction mathématique. Les coefficients de cette fonction sont les

paramètres du modèle.

3. La Fonction Coût

Lorsqu’on teste notre modèle sur le Dataset, celui-ci nous donne des

erreurs. L’ensemble de ces erreurs, c’est ce qu’on appelle la Fonction

Coût.

4. L’Algorithme d’apprentissage

L’idée centrale du Machine Learning, c’est de laisser la machine trouver

quels sont les paramètres de notre modèle qui minimisent la Fonction

Coût.

Chapitre 2 : La Régression Linéaire

19
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Chapitre 2 : La
Régression Linéaire

Il est temps de mettre en pratique les concepts que vous avez appris. A

travers l’exemple de la Régression Linéaire, vous allez mieux

comprendre les notions de :

• Dataset

• Modèle

• Fonction Coût

• Gradient Descent

Chapitre 2 : La Régression Linéaire

20
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Petit rappel : Apprentissage Supervisé et

problème de Régression

Si vous cherchez à prédire le cours de la bourse, le prix d’un

appartement, ou bien l’évolution de la température sur Terre, alors vous

cherchez en fait à résoudre un problème de régression.

Si vous disposez d’un Dataset (𝑥, 𝑦) alors vous pouvez utiliser

l’apprentissage supervisé pour développer un modèle de régression.

Dans ce chapitre je vais vous montrer comment développer votre premier

modèle de Machine Learning !

Apprenez votre premier modèle linéaire

Voici la recette à suivre pour réaliser votre premier modèle de Machine

Learning.

1. Récolter vos données

Imaginez que plusieurs agences immobilières vous aient fourni des

données sur des appartements à vendre, notamment le prix de

l’appartement (𝒚) et la surface habitable (𝒙). En Machine Learning, on dit

que vous disposez de 𝒎 exemples d’appartements.

On désigne :

𝒙(𝒊) la surface habitable de l’exemple 𝒊

𝒚(𝒊) le prix de l’exemple 𝒊

En visualisant votre Dataset, vous obtenez le nuage de points suivant :

Chapitre 2 : La Régression Linéaire

21
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

2. Créer un modèle linéaire

A partir de ces données, on développe un modèle linéaire 𝒇(𝒙) = 𝒂𝒙 + 𝒃

où 𝒂 et 𝒃 sont les paramètres du modèle.

Un bon modèle donne de petites erreurs entre ses prédictions 𝒇(𝒙) et les

exemples (𝒚) du Dataset.

Nous ne connaissons pas les valeurs des paramètres 𝒂 et 𝒃, ce sera le

rôle de la machine de les trouver, de sorte à tracer un modèle qui s’insère

bien dans notre nuage de point comme ci-dessous :

3. Définir La Fonction Coût

Pour la régression linéaire, on utilise la norme euclidienne pour mesurer

les erreurs entre 𝒇(𝒙) et (𝒚).

Concrètement, voici la formule pour exprimer l’erreur 𝑖 entre le prix 𝒚(𝒊)
et la prédiction faites en utilisant la surface 𝒙(𝒊) :

𝑒𝑟𝑟𝑒𝑢𝑟(𝑖) = (𝑓(𝑥(𝑖)) − 𝑦(𝑖))2

Chapitre 2 : La Régression Linéaire

22
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Par exemple, imaginez que le 10ième exemple de votre Dataset soit un

appartement de 𝑥(10) = 80 𝑚2 dont le prix s’élève à 𝑦(10) = 100,000 € et

que votre modèle prédise un prix de 𝑓(𝑥(10))100,002 €. L’erreur pour

cette exemple est donc :

𝑒𝑟𝑟𝑒𝑢𝑟(10) = (𝑓(𝑥(10)) − 𝑦(10))
2

𝑒𝑟𝑟𝑒𝑢𝑟(10) = (100,002 − 100,000)2

𝑒𝑟𝑟𝑒𝑢𝑟(10) = (2)2

𝑒𝑟𝑟𝑒𝑢𝑟(10) = 4

Chaque prédiction s’accompagne d’une erreur, on a donc 𝒎 erreurs.

On définit la Fonction Coût 𝑱(𝒂, 𝒃) comme étant la moyenne de toutes

les erreurs :

𝐽(𝑎, 𝑏) =
1

2𝑚
∑ 𝑒𝑟𝑟𝑒𝑢𝑟𝑖

𝑚

𝑖=1

𝑱(𝒂, 𝒃) =
𝟏

𝟐𝒎
∑(𝒇 (𝒙(𝒊)) − 𝒚(𝒊))

𝟐
𝒎

𝒊=𝟏

Note : En français, cette fonction a un nom : c’est l’erreur quadratique

moyenne (Mean Squared Error)

Chapitre 2 : La Régression Linéaire

23
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

4. Trouver les paramètres qui minimisent la Fonction

Coût

La prochaine étape est l’étape la plus excitante, il s’agit de laisser la

machine apprendre quels sont les paramètres qui minimisent la Fonction

Coût, c’est-à-dire les paramètres qui nous donnent le meilleur modèle.

Pour trouver le minimum, on utilise un algorithme d’optimisation qui

s’appelle Gradient Descent (la descente de gradient).

Comprendre le Gradient Descent (la descente de gradient)

Imaginez-vous perdu en montagne. Votre but est de rejoindre le refuge

qui se trouve au point le plus bas de la vallée. Vous n’avez pas pris de

carte avec vous donc vous ne connaissez pas les coordonnées de ce

refuge, vous devez le trouver tout seul.

Pour vous en sortir, voici une stratégie à adopter :

1. Depuis votre position actuelle, vous partez en direction de là où la

pente descend le plus fort.

2. Vous avancez une certaine distance en suivant cette direction

coûte que coûte (même si ça implique de remonter une pente)

3. Une fois cette distance parcourue, vous répétez les 2 premières

opérations en boucle, jusqu’à atteindre le point le plus bas de la

vallée.

Chapitre 2 : La Régression Linéaire

24
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Etape 1: Trouver la pente la
plus forte

Etape 2: Marcher une certaine
distance dans cette direction

Etape 3: Répéter les étapes 1
et 2 en boucle

Les étapes 1, 2 et 3 forment ce qu’on appelle l’algorithme de Gradient

Descent.

Cet algorithme vous permet de trouver le minimum de la Fonction Coût

𝑱(𝒂, 𝒃) (le point le plus bas de la montagne) en partant de coordonnées 𝒂

et 𝒃 aléatoires (votre position initiale dans la montagne) :

1. Calculer la pente de la Fonction Coût, c’est-à-dire la dérivée de

𝑱(𝒂, 𝒃).

2. Evoluer d’une certaine distance ∝ dans la direction de la pente la

plus forte. Cela a pour résultat de modifier les paramètres 𝒂 et 𝒃

3. Recommencer les étapes 1 et 2 jusqu’à atteindre le minimum de

𝑱(𝒂, 𝒃).

Pour illustrer l’algorithme, voyez le dessin ci-dessous, où je montre la

recherche du paramètre 𝒂 idéal (la même chose s’applique au paramètre

𝒃)

Chapitre 2 : La Régression Linéaire

25
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Revenons à nos moutons : Comment utiliser l’algorithme de

Gradient Descent

Pour rappel, nous avons jusqu’à présent créé un Dataset, développé un

modèle aux paramètres inconnus, et exprimé la Fonction Coût 𝑱(𝒂, 𝒃)

associée à ce modèle.

Notre objectif final : Trouver les paramètres 𝒂 et 𝒃 qui minimisent 𝑱(𝒂, 𝒃).

Pour cela, nous allons choisir 𝒂 et 𝒃 au hasard (nous allons nous perdre

en montagne) puis allons utiliser en boucle la descente de gradient pour

mettre à jour nos paramètres dans la direction de la Fonction Coût la plus

faible.

𝑅é𝑝𝑒𝑡𝑒𝑟 𝑒𝑛 𝑏𝑜𝑢𝑐𝑙𝑒:

𝒂 = 𝒂 − ∝
𝝏 𝑱(𝒂, 𝒃)

𝝏 𝒂

𝒃 = 𝒃 − ∝
𝝏 𝑱(𝒂, 𝒃)

𝝏 𝒃

Je vous explique : à chaque itération de cette boucle, les paramètres 𝒂 et

𝒃 sont mis à jour en soustrayant leur propre valeur à la valeur de la

pente
𝝏 𝑱(𝒂,𝒃)

𝝏…
 multipliée par la distance à parcourir ∝. On appelle ∝ la

vitesse d’apprentissage (Learning rate).

Si la vitesse est trop lente, le modèle peut mettre longtemps à être

entraîné, mais si la vitesse est trop grande, alors la distance parcourue

est trop longue et le modèle peut ne jamais converger. Il est important de

trouver un juste milieu. Le dessin ci-dessous illustre mes propos.

Chapitre 2 : La Régression Linéaire

26
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Une fois cet algorithme programmé, vous allez vivre le moment le plus

excitant de votre vie de Data Scientist : voir votre première intelligence

artificielle apprendre à prédire le prix d’un appartement selon sa

surface habitable. Vous verrez comme ci-dessous que votre algorithme

arrive à minimiser la Fonction Coût avec le nombre d’itérations.

A partir de là, c’est la porte ouverte aux algorithmes qui automatisent les

transactions immobilières, et le même concept que celui que vous venez

d’apprendre sera appliqué pour apprendre à une machine comment

reconnaitre un visage sur une photo, comment prédire le cours de la

bourse, etc.

Mais avant de voir la magie s’opérer, il faut avoir préalablement calculer

les dérivées partielles de la Fonction Coût.

Calcul des dérivées partielles

Pour implémenter l’algorithme de Gradient Descent, il faut donc calculer

les dérivées partielles de la Fonction Coût. Rappelez-vous qu’en

mathématique, la dérivée d’une fonction en un point nous donne la valeur

de sa pente en ce point.

Fonction Coût :

𝑱(𝒂, 𝒃) =
𝟏

𝟐𝒎
∑(𝒂𝒙(𝒊) + 𝒃 − 𝒚(𝒊))𝟐

𝒎

𝒊=𝟏

Chapitre 2 : La Régression Linéaire

27
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Dérivée selon le paramètre 𝒂 :

𝝏 𝑱(𝒂, 𝒃)

𝝏 𝒂
=

𝟏

𝒎
∑(𝒂𝒙(𝒊) + 𝒃 − 𝒚(𝒊))

𝒎

𝒊=𝟏

 × 𝒙(𝒊)

Dérivée selon le paramètre 𝒃 :

𝝏 𝑱(𝒂, 𝒃)

𝝏 𝒃
=

𝟏

𝒎
∑(𝒂𝒙(𝒊) + 𝒃 − 𝒚(𝒊))

𝒎

𝒊=𝟏

Note :

Surtout ne soyez pas impressionnés par ces formules mathématiques ! Il

s’agit simplement de la dérivée d’une fonction composée :

(𝑔 ∘ 𝑓)′ = 𝑓′ × 𝑔′ ∘ 𝑓

Avec : 𝒇 = 𝒂𝒙 + 𝒃 − 𝒚 et 𝒈 = (𝒇)𝟐

En dérivant, le carré tombe et se simplifie avec la fraction
1

2𝑚
 pour devenir

1

𝑚
 et 𝒙(𝒊) apparait en facteur pour la dérivée par rapport à 𝑎.

Utilisation des matrices et des vecteurs

Dans la pratique, on exprime notre Dataset et nos paramètres sous forme

matricielle, ce qui simplifie beaucoup les calculs. On créer ainsi un

vecteur 𝜽 = (𝒂
𝒃
) ∈ ℝ 𝒏+𝟏 qui contient tous les paramètres pour notre

modèle, un vecteur 𝒚 ∈ ℝ𝒎×𝟏 et une matrice 𝑋 ∈ ℝ𝒎×𝒏 qui inclut toutes

les features 𝒏. Dans la régression linéaire, 𝒏 = 𝟏.

Au cas où vous seriez rouillé en algèbre : une matrice ℝ𝒎×𝒏, c’est comme

un tableau avec 𝑚 𝑙𝑖𝑔𝑛𝑒𝑠 𝑒𝑡 𝑛 𝑐𝑜𝑙𝑜𝑛𝑛𝑒𝑠.

Chapitre 2 : La Régression Linéaire

28
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Résumé des étapes pour développer un

programme de Régression Linéaire

La recette de la régression linéaire :

1. Récolter des données (𝑿, 𝒚) 𝑎𝑣𝑒𝑐 𝑿, 𝒚 ∈ ℝ𝒎×𝟏

2. Donner à la machine un modèle linéaire 𝑭(𝑿) = 𝑿. 𝜽 𝒐ù 𝜽 = (𝒂
𝒃
)

3. Créer la Fonction Coût 𝑱(𝜽) =
𝟏

𝟐𝒎
 ∑(𝑭(𝑿) − 𝒚)𝟐

4. Calculer le gradient et utiliser l’algorithme de Gradient Descent

𝑅é𝑝𝑒𝑡𝑒𝑟 𝑒𝑛 𝑏𝑜𝑢𝑐𝑙𝑒:

 𝜽 = 𝜽 − 𝜶 ×
𝝏 𝑱(𝜽)

𝝏 𝜽

𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕:
𝜕 𝐽(𝜃)

𝜕 𝜃
=

1

𝑚
 𝑋𝑇 . (𝐹(𝑋) − 𝑌)

Le 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝛼 prend le nom d’hyper-paramètre de par son influence

sur la performance finale du modèle (s’il est trop grand où trop petit, la

fonction le Gradient Descent ne converge pas).

Dans le prochain chapitre, vous allez apprendre à programmer votre

premier algorithme de Machine Learning en utilisant Python.

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

29
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Chapitre 3 : Adieu
Excel, bonjour Python.

Vous voilà Data
Scientist !

Fini la théorie, il est temps de passer à l’action !

Dans ce chapitre, vous allez apprendre à écrire de vrais programmes de

Machine Learning en utilisant Python et le module Sklearn.

Spécifiquement pour ce chapitre, vous allez écrire un programme de

Régression Linéaire à plusieurs variables et vous apprendrez

comment facilement modifier votre code pour faire des Régressions

polynômiales.

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

30
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Installer Python Anaconda : le meilleur outil de

Machine Learning

Il existe deux façons d’installer les outils de Machine Learning sur votre

ordinateur : La bonne et la mauvaise.

En installant Anaconda, vous vous épargnez des heures de souffrance à

taper des commandes en mode ‘geek’ à installer les packages, librairies et

éditeur de texte indispensables pour faire du Machine Learning.

Pourquoi faire simple quand on peut faire compliqué ?

a

a b

b

Autres méthodes

Anaconda contient tous les outils et librairies dont vous avez besoin pour

faire du Machine Learning : Numpy, Matplotlib, Sklearn, etc.

Commencez par télécharger puis installer Anaconda depuis le site officiel :

https://www.anaconda.com/distribution/#download-section

Note: Téléchargez toujours la version la plus récente de Python (ici

Python 3.7)

https://www.anaconda.com/distribution/#download-section

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

31
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Pour plus d’information, je vous montre ici en vidéo comment vous y

prendre pour installer Anaconda et comment vous en servir.

Une fois Anaconda installé, vous pouvez lancer l’application Jupyter

Notebook depuis votre barre de recherche Windows/Mac/Linux.

Utilisation de Jupyter Notebook pour vos projets

Jupyter Notebook est une application Web qui permet de créer et de

partager des codes Python.

Note : C’est une application Web, mais il n’est pas nécessaire d’avoir une

connexion Internet pour vous servir de Jupyter. Aussi, vos données/codes

ne sont à aucun moment stockés sur Internet (ce n’est pas du Cloud).

Lorsque vous démarrez Jupyter, il est possible que 2 fenêtres s’ouvrent,

auquel cas ne vous occupez pas de la fenêtre noire (la console) et surtout

ne la fermez pas (ceci déconnecterait Jupyter de votre disque dur).

Ne vous occupez pas
de cette fenêtre. Ne la

fermez surtout pas!

Fenêtre D’acceuil de Jupyter. Vous y
trouvez les fichiers stockés sur votre

disque dur.

Cliquez sur ‘New’
pour écrire un

nouveau programme

https://youtu.be/jaw5FhWx2Bk
http://localhost:8888/tree?token=78f410654d7d3a0277cb593c455e2b1e907d1637afe82762

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

32
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

La fenêtre principale de Jupyter n’est ni plus ni moins qu’un explorateur

de fichier relié à votre disque dur, vous pouvez ouvrir tous vos fichiers,

Dataset, codes, etc. depuis cette fenêtre.

Cliquez sur le bouton ‘New’ situé en haut à droite de cette fenêtre pour

commencer à écrire un nouveau programme (puis cliquez sur Python 3).

La fenêtre suivante s’affiche alors : Vous êtes prêts à coder !

Apprenez la programmation en 15 minutes

Il est possible que certains d’entre vous n’aient jamais écrit de

programme de leur vie, alors je vais vous expliquer à ma façon comment

comprendre le monde de la programmation en moins de 15 minutes.

La programmation : une nouvelle vision du monde

En programmation, on choisit d’adopter une certaine vision du monde

dans lequel nous vivons. On peut considérer que le monde peut être

modélisé à partir de 2 concepts :

• Des objets

• Des actions, qui modifient l’état des objets.

Regardez autour de vous. Vous êtes entourés d’objets. En réalisant une

action, des objets peuvent apparaitre, disparaitre, se combiner, se

transformer, etc.

D’ailleurs, quand nous nous exprimons, il est nécessaire et suffisant de

dire un nom (objet) et un verbe (action) pour faire une phrase.

« Le chien boit. » ou bien « Le chien boit de l’eau. »

Chien : Objet

Boit : Action

Eau : Objet, qui diminue avec l’action boire.

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

33
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

En programmation, ces deux notions prennent le nom de variable et de

fonction, les fonctions transformant la valeur des variables.

Function
Input

Variable
Output

Variable

Mélanger
Eau chaude

Café

A x B
A = 2

C = 6

Café soluble

B = 3

Le plus souvent, il n’est pas nécessaire de développer ses propres

fonctions car celles-ci sont déjà développées dans des librairies open

source.

Par exemple, la librairie Sklearn contient toutes les fonctions

mathématiques et l’algorithme de Gradient Descent que nous avons

appris dans le Chapitre 2 ! En pratique, il est donc inutile d’écrire la

moindre équation mathématique. Génial, non ?!

Au fil des exemples dans ce livre, vous allez naturellement apprendre

comment programmer en Python spécialement pour le Machine Learning.

Mon but est de vous épargner une avalanche de détails inutiles que vous

pourriez trouver dans une formation classique, pour vous montrer les

fonctions essentielles et utiles qui vous aideront réellement à résoudre

des problèmes dans votre travail après la lecture de ce livre.

Si toute fois vous désirez apprendre Python plus en profondeur, Internet

regorge de formations gratuites et… ah oui j’oubliais : il y a ma chaine

YouTube aussi ! ☺

https://www.youtube.com/channel/UCmpptkXu8iIFe6kfDK5o7VQ

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

34
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Les bases de Python

1. Les commentaires

Dans tout langage de programmation, il est possible d’écrire des

commentaires. Un commentaire n’est pas lu par la machine et vous

pouvez donc y écrire ce que vous voulez pour documenter votre code.

Dans Python, il suffit de précéder votre code du symbole « # » pour le

transformer en commentaire.

ceci est un commentaire

2. Les variables

Pour définir une variable dans Jupyter, il suffit de lui donner un nom et de

lui assigner une valeur. Par exemple, vous pouvez choisir de créer la

variable « vitesse » et de lui assigner la valeur 90.

Note : les accents et chiffres sont à bannir pour le nom d’une variable !

Vous pouvez effectuer des opérations mathématiques entre les variables

numériques.

Une fois le code écrit, appuyez sur CTRL + Entrée pour exécuter votre

code. Le résultat est affiché et une nouvelle cellule s’ouvre en bas pour

continuer à écrire du code.

Il existe de nombreux types de variables : les variables numériques, les

listes, les matrices, les chaines de caractères…

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

35
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

3. Les fonctions

Comme énoncé plus haut, Python contient déjà de nombreuses librairies

remplies de fonctions très utiles et il n’est pas nécessaire de coder ses

propres fonctions pour faire du Machine Learning.

Cependant, je vais tout de même vous montrer la structure d’une fonction

dans Python, pour votre connaissance personnelle. Vous êtes libres de

passer directement à la page suivante si l’envie vous prend.

Rappelez-vous qu’une fonction transforme le plus souvent une entrée en

sortie :

Function
Input

Variable
Output

Variable

Pour créer une fonction dans Python, il faut commencer par écrire

« def » en début de ligne, puis donner un nom à la fonction, écrire les

inputs entre parenthèse, et finir la ligne par un « : ».

Les lignes suivantes font partie de la fonction, vous pouvez y écrire des

commentaires, créer de nouvelles variables, faire des opérations

mathématiques etc.

La fonction s’arrête à la ligne « return » qui indique quelle sortie la

fonction doit produire.

Une fois la fonction créée, il est possible de l’utiliser à l’infini !

Exemple :

Voyons maintenant les principales librairies qui contiendront les fonctions

à connaitre pour faire du Machine Learning comme un pro !

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

36
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

4. Les 4 librairies à maîtriser pour le Machine Learning

Pour importer une librairie dans Python, rien de plus simple. Il suffit

d’écrire le nom de la librairie précédé de « import » en tête de votre

programme. Il est également possible d’importer certaines fonctions de la

librairie en écrivant from « librairie » import « truc ».

Exemple :

Numpy est la librairie qui permet de créer et manipuler des matrices

simplement et avec efficacité.

En Machine Learning, on insère le plus souvent notre Dataset dans des

matrices. Ainsi le calcul matriciel représente l’essentiel du Machine

Learning. Il est important de le comprendre, mais les fonctions présentes

dans Numpy font les calculs matriciels à notre place… Magique !

Matplotlib est la librairie qui permet de visualiser nos Datasets, nos

fonctions, nos résultats sous forme de graphes, courbes et nuages de

points.

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

37
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Sklearn est la librairie qui contient toutes les fonctions de l’état de l’art

du Machine Learning. On y trouve les algorithmes les plus

importants ainsi que diverses fonctions de pre-processing.

Pandas est une excellente librairie pour importer vos tableaux Excel (et

autres formats) dans Python dans le but de tirer des statistiques et de

charger votre Dataset dans Sklearn.

5. Et tout ce dont je n’ai pas parlé

Dans cette introduction à Python, je n’ai pas parlé des boucles for et

while. Je n’ai pas parlé des conditions if elif else et j’ai omis d’introduire

d’autres commandes de bases comme « print(‘hello world’) ».

Ces codes sont bien évidemment importants, mais ils ne sont pas

essentiels à la compréhension et à l’apprentissage du Machine Learning

pour ce livre.

Je vous invite à consulter ma chaine YouTube si vous désirez compléter

vos bases en Python. ☺

https://www.youtube.com/channel/UCmpptkXu8iIFe6kfDK5o7VQ

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

38
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Développer enfin votre premier programme de

Machine Learning

Fini de rigoler, il est temps de passer à l’action ! Vous allez maintenant

développer un programme de régression linéaire en suivant la méthode

apprise dans le chapitre 2.

Les étapes pour programmer une Régression Linéaire

Etape 1 : Importer les librairies

Commençons par ouvrir un nouveau Notebook dans Jupyter comme nous

l’avons appris précédemment. Ensuite, il faut importer les librairies et

fonctions suivantes :

• Numpy pour manipuler notre Dataset en tant que matrice

• Matplotlib.pyplot pour visualiser nos données

• La fonction make_regression de Sklearn pour générer

un nuage de point (ici on va simuler des données)

• SGDRegressor (qui signifie Stochastic Gradient Descent

Regressor) et qui contient le calcul de la Fonction Coût,

des gradients, de l’algorithme de minimisation, bref…

tout ce qui pouvait sembler compliqué dans le chapitre 2.

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import make_regression

from sklearn.linear_model import SGDRegressor

N’oubliez pas de taper CTRL + Entrée pour exécuter votre code. S’il y a

une erreur, réviser vos compétences du copier/coller… ☺

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

39
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Etape 2 : Créer un Dataset

Pour ce premier code, nous n’allons pas importer de données

personnelles. Plutôt, nous allons générer un tableau de données (𝒙, 𝒚)

aléatoires.

Pour cela, la fonction make_regression est très utile. La fonction prend

comme arguments (c’est le mot pour désigner inputs) le nombre

d’échantillons à générer, le nombre de variables et le bruit puis nous

retourne deux vecteurs 𝒙 et 𝒚.

Pour maitriser l’aléatoire, on écrit la ligne np.random.seed(0).

Finalement, pour visualiser nos données on utilise la fonction
plt.scatter(x, y).

np.random.seed(0)

x, y = make_regression(n_samples=100, n_features=1, noise=10)

plt.scatter(x, y)

Voici le résultat que vous devriez obtenir :

Etape 3 : Développer le modèle et l’entraîner

Pour développer et entraîner un modèle, il a fallu beaucoup de maths

dans le chapitre 2 : Entre la Fonction Coût, les dérivées, l’algorithme de

Gradient Descent…

Dans Sklearn, tout cela est déjà fait pour vous !

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

40
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Il vous suffit de définir une variable model depuis le générateur

SGDRegressor en entrant le nombre d’itérations que le Gradient Descent

doit effectuer ainsi que le Learning Rate.

Une fois le modèle défini, il vous faut l’entraîner. Pour cela, il suffit

d’utiliser la fonction fit.

Par exemple, entraînons notre modèle sur 100 itérations avec un

Learning rate de 0.0001 :

model = SGDRegressor(max_iter=100, eta0=0.0001)

model.fit(x,y)

Nous pouvons maintenant observez la précision de notre modèle en

utilisant la fonction score qui calcule le coefficient de détermination

entre le modèle et les valeurs 𝒚 de notre Dataset.

On peut aussi utiliser notre modèle pour faire de nouvelles prédictions

avec la fonction predict et tracer ces résultats avec la fonction

plt.plot :

print('Coeff R2 =', model.score(x, y))

plt.scatter(x, y)

plt.plot(x, model.predict(x), c='red', lw = 3)

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

41
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Wow ! Notre modèle semble vraiment mauvais. C’est parce que nous ne

l’avons pas entraîné suffisamment longtemps et parce que le Learning

rate était trop faible. Aucun problème, il est possible de le ré-entraîner

avec de meilleurs hyper-paramètres.

En Machine Learning, les valeurs qui fonctionnent bien pour la plupart

des entraînements sont :

• Nombre d’itérations = 1000

• Learning rate = 0.001

Fantastico ! Vous avez entraîné votre premier modèle de Machine

Learning, et il fonctionne vraiment bien avec un coefficient 𝑅2 = 94%. Vous

pourriez maintenant vous en servir pour faire de bonnes prédictions ! Par

exemple pour prédire le prix d’un appartement selon sa surface habitable,

ou bien pour prédire l’évolution de la température sur Terre.

Mais peut-être n’êtes-vous pas très satisfait… On peut aussi faire ce genre

de chose dans Excel, pourquoi se compliquer la vie ?

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

42
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Certes, mais les choses vont commencer à devenir plus excitantes dans les

prochaines pages quand nous allons développer des modèles à partir de

centaines de variables (ici nous n’en avions qu’une : 𝒙)

Mais auparavant, je vais vous montrer comment votre machine a appris

les paramètres du modèle avec le Gradient Descent. Pour cela, il existe ce

qu’on appelle les courbes d’apprentissage.

Les courbes d’apprentissage

En Machine Learning, on appelle courbe d’apprentissage (Learning

curves) les courbes qui montrent l’évolution de la Fonction Coût au fil

des itérations de Gradient Descent. Si votre modèle apprend, alors sa

Fonction Coût doit diminuer avec le temps, comme ci-dessous :

A chaque itération, le modèle s’améliore pour donner la droite ci-dessous.

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

43
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Si vous souhaitez reproduire ces courbes, je vous ai mis à la fin de ce

livre le code que vous pourrez copier/coller (en bonus je vous donne la

version longue du code de Gradient Descent telle que nous l’avons vu

dans le chapitre 2).

Régression Polynômiale à plusieurs variables

Si vous achetez un stylo à 1€, combien vous coûteront 100 stylos ?

100 € ? Faux !

Nous vivons dans un monde régit par des lois souvent non-linéaires et

où une infinité de facteurs peuvent influencer nos résultats.

Par exemple, si vous achetez 100 stylos, vous aurez peut-être une

réduction à 90 €. Si en revanche il y a une pénurie de stylos, ce même

stylo qui coûtait 1 € pourrait valoir 1.50 €

C’est là qu’Excel ne pourra plus rien pour vous et que le Machine Learning

trouve son utilité dans le monde réel.

Problème non-linéaire : Un problème plus compliqué ?

Pour le nuage de point ci-dessous, il semblerait judicieux de développer

un modèle polynômial de degré 2.

𝒇(𝒙) = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄

Ce modèle, plus complexe que le modèle linéaire précédent, va

engendrer des calculs algébriques plus intenses, notamment le calcul des

dérivées … ou pas !

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

44
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

En fait, le code que nous avons écrit pour la régression linéaire peut être

utilisé pour des problèmes bien plus complexes. Il suffit de générer des

variables polynômiales dans notre Dataset en utilisant la fonction

PolynomialFeatures présente dans Sklearn.

from sklearn.preprocessing import PolynomialFeatures

Grâce au calcul matriciel (présent dans Numpy et Sklearn) la machine

peut intégrer ces nouvelles variables polynômiales sans changer son

calcul !

Dans l’exemple ci-dessous, j’ai choisi d’ajouter une variable polynômiale

de degré 2 pour forcer la machine à développer un modèle qui épousera

l’allure parabolique de 𝒚 en fonction de 𝒙.

np.random.seed(0)

création du Dataset
x, y = make_regression(n_samples=100, n_features=1, noise=10)
y = y**2 # y ne varie plus linéairement selon x !

On ajoute des variables polynômiales dans notre dataset
poly_features = PolynomialFeatures(degree=2, include_bias=False)
x = poly_features.fit_transform(x)

plt.scatter(x[:,0], y)
x.shape # la dimension de x: 100 lignes et 2 colonnes

On entraine le modele comme avant ! rien ne change !
model = SGDRegressor(max_iter=1000, eta0=0.001)
model.fit(x,y)
print('Coeff R2 =', model.score(x, y))

plt.scatter(x[:,0], y, marker='o')
plt.scatter(x[:,0], model.predict(x), c='red', marker='+')

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

45
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Avec la fonction PolynomialFeatures on peut ainsi développer des

modèles bien plus complexes capable de prédire des résultats sur des

milliers de dimensions (un exemple ci-dessous)

Chapitre 3 : Adieu Excel, bonjour Python. Vous voilà Data Scientist !

46
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Résumé de ce Chapitre

Pour faire vos premiers pas dans le Machine Learning, vous avez installé

Anaconda Python qui comprend tous les outils et librairies nécessaires

(Jupyter, Numpy, Sklearn etc).

Avec Sklearn, il suffit d’écrire quelques lignes pour développer des

modèles de Régression Linéaire et Polynômiale. Vous devez vous souvenir

des fonctions suivantes

• model = SGDRegressor(nb_itérations, learning_rate)

• model.fit(x, y) : pour entrainer votre modèle.

• model.score(x, y) : pour évaluer votre modèle.

• model.predict(x) : pour générer des prédictions.

Je n’ai pas parlé de la fonction de Sklearn.linear_model.LinearRegression

car cette méthode n’intègre pas l’algorithme de Gradient Descent. Elle

repose en fait sur les Equations Normales, et fonctionne très bien,

mais s’adapte mal aux gros Datasets (quand il y a plusieurs centaines de

features). Nous utiliserons cependant cette méthode dans le Chapitre 7.

Chapitre 4 : Régression Logistique et Algorithmes de Classification

47
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Chapitre 4 : Régression
Logistique et

Algorithmes de
Classification

Dans l’apprentissage supervisé, il y a deux type de problèmes :

• Les régressions

• Les classifications

Dans ce chapitre, vous allez découvrir le modèle de Régression

Logistique, qui permet de résoudre des problèmes de classification

binaires.

Je vais aussi vous présenter un des algorithmes les plus populaires et

simple : Le K-Nearest Neighbour.

Chapitre 4 : Régression Logistique et Algorithmes de Classification

48
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Les problèmes de Classification

Jusqu’à présent, nous avons appris comment résoudre des problèmes de

régression. Au cours du chapitre 1, j’ai parlé des problèmes de

classification, qui consistent par exemple à classer un email en tant que

‘spam’ ou ‘non spam’.

Dans ce genre de problème, on aura un Dataset contenant une variable

target 𝒚 pouvant prendre 2 valeurs seulement, par exemple 0 ou 1

• si 𝑦 = 0, alors l’email n’est pas un spam

• si 𝑦 = 1, alors l’email est un spam

On dit également que l’on a 2 classes, c’est une classification binaire.

Pour ces problèmes, on ajoute au modèle une frontière de décision qui

permet de classer un email dans la 𝑐𝑙𝑎𝑠𝑠𝑒 0 ou la 𝑐𝑙𝑎𝑠𝑠𝑒 1.

Chapitre 4 : Régression Logistique et Algorithmes de Classification

49
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Le modèle de Régression logistique

Pour les problèmes de classification binaire, un modèle linéaire 𝑭 = 𝑿. 𝜽,

comme je l’ai tracé sur la figure précédente, ne convient pas. Voyez

plutôt le résultat que l’on obtient avec un tel modèle pour le Dataset

suivant :

On développe alors une nouvelle fonction pour les problèmes de

classification binaire, c’est la fonction logistique (aussi appelé fonction

sigmoïde ou tout simplement sigma 𝝈). Cette fonction a la particularité

d’être toujours comprise en 0 et 1.

Pour coller la fonction logistique sur un Dataset (𝑿, 𝒚) on y fait passer le

produit matriciel 𝑿. 𝜽 ce qui nous donne le modèle de Logistic

Regression :

𝝈(𝑿. 𝜽) =
𝟏

𝟏 + 𝒆− 𝑿.𝜽

Chapitre 4 : Régression Logistique et Algorithmes de Classification

50
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

A partir de cette fonction, il est possible de définir une frontière de

décision. Typiquement, on définit un seuil à 0.5 comme ceci :

{
 𝒚 = 𝟎 𝒔𝒊 𝝈(𝑿. 𝜽) < 𝟎. 𝟓

 𝒚 = 𝟏 𝒔𝒊 𝝈(𝑿. 𝜽) ≥ 𝟎. 𝟓

Fonction Coût associée à la Régression Logistique

Pour la régression linéaire, la Fonction Coût 𝑱(𝜽) =
𝟏

𝟐𝒎
∑(𝑿. 𝜽 − 𝒀)𝟐 donnait

une courbe convexe (qui présente un unique minima). C’est ce qui fait

que l’algorithme de Gradient Descent fonctionne.

En revanche, utiliser cette fonction pour le modèle Logistique ne donnera

pas de courbe convexe (dû à la non-linéarité) et l’algorithme de Gradient

Descent se bloquera au premier minima rencontré, sans trouver le

minimum global.

Chapitre 4 : Régression Logistique et Algorithmes de Classification

51
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Il faut donc développer une nouvelle Fonction Coût spécialement pour la

régression logistique. On utilise alors la fonction logarithme pour

transformer la fonction sigma en fonction convexe en séparant les cas

où 𝑦 = 1 des cas où 𝑦 = 0.

Fonction Coût dans les cas où 𝑦 = 1

Voici la Fonction Coût que l’on utilise dans les cas où 𝑦 = 1 :

𝑱(𝜽) = − 𝐥𝐨𝐠 (𝝈(𝑿. 𝜽))

Explications :

Si notre modèle prédit 𝜎(𝑥) = 0 alors que 𝑦 = 1, on doit pénaliser la

machine par une grande erreur (un grand coût). La fonction logarithme

permet de tracer cette courbe avec une propriété convexe, ce qui
poussera le Gradient Descent à trouver les paramètres 𝜽 pour un coût

qui tend vers 0.

Chapitre 4 : Régression Logistique et Algorithmes de Classification

52
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Fonction Coût dans les cas où 𝑦 = 0

Cette fois la Fonction Coût devient :

𝑱(𝜽) = − 𝐥𝐨𝐠 (𝟏 − 𝝈(𝑿. 𝜽))

Explications :

Si notre modèle prédit 𝜎(𝑥) = 1 alors que 𝑦 = 0, on doit pénaliser la

machine par une grande erreur (un grand coût). Cette fois − 𝐥𝐨𝐠 (𝟏 − 𝟎)

donne la même courbe, inversée sur l’axe vertical.

Fonction Coût complète

Pour écrire la Fonction Coût en une seule équation, on utilise l’astuce de

séparer les cas 𝑦 = 0 𝑒𝑡 𝑦 = 1 avec une annulation :

𝑱(𝜽) =
− 𝟏

𝒎
 ∑ 𝒚 × 𝐥𝐨𝐠(𝝈(𝑿. 𝜽)) + (𝟏 − 𝒚) × 𝐥𝐨𝐠(𝟏 − 𝝈(𝑿. 𝜽))

Dans le cas où 𝑦 = 0, il nous reste :

𝐽(𝜃) =
− 1

𝑚
 ∑ 0 × log(𝜎(𝑋. 𝜃)) + 𝟏 × 𝐥𝐨𝐠(𝟏 − 𝝈(𝑿. 𝜽))

Et dans le cas où 𝑦 = 1

𝐽(𝜃) =
− 1

𝑚
 ∑ 𝟏 × 𝐥𝐨𝐠(𝝈(𝑿. 𝜽)) + 0 × log(1 − 𝜎(𝑋. 𝜃))

Chapitre 4 : Régression Logistique et Algorithmes de Classification

53
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Gradient Descent pour la Régression Logistique

L’algorithme de Gradient Descent s’applique exactement de la même

manière que pour la régression linéaire. En plus, la dérivée de la

Fonction Coût est la même aussi ! On a :

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡:
𝝏 𝑱(𝜽)

𝝏 𝜽
=

𝟏

𝒎
∑(𝝈(𝑿. 𝜽) − 𝒚). 𝑿

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐷𝑒𝑠𝑐𝑒𝑛𝑡: 𝜽 = 𝜽 − 𝜶 ×
𝝏 𝑱(𝜽)

𝝏 𝜽

Résumé de la Régression Logistique

𝑴𝒐𝒅è𝒍𝒆: 𝜎(𝑋. 𝜃) =
1

1 + 𝑒−𝑋.𝜃

𝑭𝒐𝒏𝒄𝒕𝒊𝒐𝒏 𝑪𝒐û𝒕: 𝐽(𝜃) =
− 1

𝑚
 ∑ 𝑦 × log(𝜎(𝑋. 𝜃)) + (1 − 𝑦) × log(1 − 𝜎(𝑋. 𝜃))

𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕:
𝜕 𝐽(𝜃)

𝜕 𝜃
=

1

𝑚
 𝑋𝑇 . (𝜎(𝑋. 𝜃) − 𝑦)

𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕 𝑫𝒆𝒔𝒄𝒆𝒏𝒕: 𝜃 = 𝜃 − 𝛼 ×
𝜕 𝐽(𝜃)

𝜕 𝜃

Développer un programme de classification

binaire dans Jupyter

On est reparti dans Jupyter ! Comme pour le chapitre 3, nous allons

générer des données aléatoires, mais cette fois-ci avec la fonction

make_classification. Commençons par importer nos modules habituels :

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.linear_model import SGDClassifier

Génération de données aléatoires: 100 exemples, 2 classes, 2 features x0 et x1
np.random.seed(1)
X, y = make_classification(n_samples=100,n_features=2, n_redundant=0, n_informative=1,
 n_clusters_per_class=1)

Visualisation des données
plt.figure(num=None, figsize=(8, 6))
plt.scatter(x[:,0], x[:, 1], marker = 'o', c=y, edgecolors='k')
plt.xlabel('X0')
plt.ylabel('X1')
x.shape

Chapitre 4 : Régression Logistique et Algorithmes de Classification

54
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Ensuite, nous devons créer un modèle en utilisant SGDClassifier.

Génération d'un modele en utilisant la fonction cout 'log' pour Logistic Regression
model = SGDClassifier(max_iter=1000, eta0=0.001, loss='log')

model.fit(X, y)
print('score:', model.score(x, y))

Une fois le modèle entraîné, on peut afficher sa frontière de décision avec

le code suivant…un peu compliqué je vous l’accorde, mais un simple

copier/coller fera l’affaire, pas vrai ? ☺

Visualisation des données
h = .02
colors = "bry"
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
 np.arange(y_min, y_max, h))

Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.axis('tight')

for i, color in zip(model.classes_, colors):
 idx = np.where(y == i)
 plt.scatter(X[idx, 0], X[idx, 1], c=color, cmap=plt.cm.Paired, edgecolor='black', s
=20)

Chapitre 4 : Régression Logistique et Algorithmes de Classification

55
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Vous pouvez désormais réutiliser ce code sur vos propres données pour

ainsi prédire si un email est un spam ou encore si une tumeur est maligne

ou non.

Bon. Nous avons vu jusqu’à présent des algorithmes bourrés de maths et

donc pas forcément fun à étudier… mais ça va changer tout de suite !

L’Algorithme de Nearest Neighbour

Je vais désormais vous montrer l’algorithme qui est probablement le plus

simple à comprendre de tous !

L’algorithme de Nearest Neighbour (le voisin le plus proche) permet de

résoudre des problèmes de classification à plusieurs classes de façon

simple et très efficace.

Chapitre 4 : Régression Logistique et Algorithmes de Classification

56
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Promenade en Montage

Vous partez vous promener en montagne avec un ami. Avant de partir, il

fait 30 °C et votre ami vous dit qu’il a chaud. Arrivé en montagne, il fait

désormais 10 °C et votre ami vous dit qu’il a froid.

En redescendant la vallée, il fait maintenant 15 °C, pensez-vous que

votre ami aura froid ou bien chaud ?

15 °C étant plus proche de 10 °C (froid) que de 30 °C (chaud), il semble

légitime de prédire que votre ami aura froid.

10°C 30°C

15°C

Froid Chaud

Froid Chaud ?ou

Voilà l’essentiel de ce qu’il y à savoir sur l’algorithme Nearest

Neighbour. Quand vous devez faire une nouvelle prédiction, trouvez

dans votre Dataset l’exemple le plus proche par rapport aux conditions

dans lesquelles vous êtes.

Eh ! Qui a dit que le Machine Learning était difficile ?

Note :

Cet exemple vous montre au passage que la variété et la quantité de

données dans votre Dataset est primordiale ! Si vous ne disposez que de

2 points : -20 °C = froid ; 20 °C = chaud, alors vous pourriez conclure

que 1 °C est une température chaude… Pas sûr que ça plaise à tout le

monde ! On en reparlera dans le Chapitre 7.

Chapitre 4 : Régression Logistique et Algorithmes de Classification

57
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

K-Nearest Neighbour (K-NN)

La distance la plus courte

Regardez le nuage de points qui suit. Quel est le l’exemple le plus proche

du point vert ? C’est un exemple de la classe rouge. L’algorithme de

Nearest Neighbour calcule ainsi la distance entre le point vert et les

autres points du Dataset et associe le point vert à la classe dont l’exemple

est le plus proche en terme de distance.

Typiquement, on utilise la distance euclidienne (c’est la droite direct

entre deux points) mais d’autres métriques sont parfois plus utiles,

comme la distance de Manhattan ou bien la distance cosinus.

Inutile de rentrer dans les détails mathématiques, vous savez désormais

que Sklearn implémente toutes les équations pour vous.

Le nombre de voisin K

Pour limiter les problèmes liés au bruit (ce qu’on appelle Over fitting, et

que nous verrons dans le chapitre 7) on peut demander à l’algorithme de

trouver les K voisins les plus proches du point vert.

Cela améliore la qualité du modèle car il devient moins sensible aux

impuretés et cas particuliers qui viendraient empêcher la bonne

généralisation (Chapitre 7).

Chapitre 4 : Régression Logistique et Algorithmes de Classification

58
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Vision par ordinateur avec K-NN dans Jupyter

Cette fois ci, je vous propose de développer un programme capable de

reconnaitre un chiffre entre 0 et 9 écrit à la main. Fini les données

générées aléatoirement ! Voici les chiffres que la machine saura

reconnaitre dans quelques minutes.

Vous pouvez charger ces données depuis Sklearn (la librairie contient des

Datasets de base).

Commençons par importer les libraires habituelles :

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.neighbors import KNeighborsClassifier

Le code ci-dessous montre un exemple de chiffre présent dans le Dataset,

c’est un exemple du chiffre 0.

On apprend aussi que le Dataset comprend 1797 exemples, c’est-à-dire

1797 images, et que chaque exemple contient 64 features.

Que sont ces 64 features ? il s’agit de la valeur de chacun des 64 pixels

qui forment les images.

Quand on soumet un nouveau chiffre à la machine, l’algorithme de K-NN

trouve l’exemple du Dataset qui ressemble le plus à notre chiffre, basé

sur le voisin le plus proche pour la valeur de chaque pixel.

Chapitre 4 : Régression Logistique et Algorithmes de Classification

59
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

importons une base de données de chiffre
digits = load_digits()

X = digits.data
y = digits.target

print('dimension de X:', X.shape)

L’étape suivante consiste à entraîner le modèle de Nearest Neighbour. En

exécutant le code vous-même, vous devriez obtenir un score de 99%, ce

qui signifie que votre modèle reconnaitra le bon chiffre 99% du temps.

Perso, je trouve ça impressionnant. Aujourd’hui, vous pourrez clairement

dire que vous savez faire du Machine Learning !

visualisons un de ces chiffres
plt.imshow(digits['images'][0], cmap = 'Greys_r')

Entraînement du modele
model = KNeighborsClassifier()
model.fit(X, y)
model.score(X, y)

Pour finir en beauté, testons une image au hasard et voyons si la machine

arrive à identifier de quel chiffre il s’agit. En l’occurrence, j’ai choisi de

tester la 100ième image de notre Dataset, qui est un 4… et la machine a su

la reconnaître !

#Test du modele
test = digits['images'][100].reshape(1, -1)
plt.imshow(digits['images'][100], cmap = 'Greys_r')
model.predict(test)

Chapitre 4 : Régression Logistique et Algorithmes de Classification

60
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Bravo pour avoir su développer votre premier vrai programme de vision

par ordinateur !

Bilan de ce chapitre

Dans ce chapitre, vous avez appris 2 algorithmes très populaires pour les

problèmes de Classification :

- La Régression Logistique avec Gradient Descent

- Le K-Nearest Neighbour.

La fonction Logistique est une fonction importante dans l’histoire du

Machine Learning. C’est elle que l’on trouve au cœur des neurones des

fameux Réseaux de Neurones, dont nous allons parler dans le prochain

chapitre.

Chapitre 5 : Réseaux de Neurones

61
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Chapitre 5 : Réseaux de
Neurones

Dans ce dernier chapitre sur l’apprentissage supervisé, nous allons

démystifier les fameux Réseaux de Neurones. Ces modèles qui font le

buzz aujourd’hui sont utilisés pour la reconnaissance vocale, la vision par

ordinateur et autres applications complexes.

Vous allez apprendre :

• Ce qu’est le Deep Learning

• Ce qui compose un Réseau de Neurones dans les détails

• Comment programmer votre premier Réseau de Neurones

Chapitre 5 : Réseaux de Neurones

62
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Introduction aux Réseaux de Neurones

Ah ! Il est temps de sortir l’artillerie lourde avec les Réseaux de

Neurones (Neural Network) qui font aujourd’hui le succès du Deep

Learning.

Les Réseaux de Neurones sont des modèles bien plus complexes que

tous les autres modèles de Machine Learning dans le sens où ils

représentent des fonctions mathématiques avec des millions de

coefficients (les paramètres). Rappelez-vous, pour la régression linéaire

nous n’avions que 2 coefficients 𝑎 𝑒𝑡 𝑏…

Avec une telle puissance, il est possible d’entraîner la machine sur des

tâches bien plus avancées :

• La reconnaissance d’objets et reconnaissance faciale

• L’analyse de sentiments

• L’analyse du langage naturel

• La création artistique

• Etc.

Cependant, développer une fonction aussi complexe à un coût. Pour y

parvenir, il faut souvent fournir :

• Un Dataset beaucoup plus grand (des millions de

données)

• Un temps d’apprentissage plus long (parfois plusieurs

jours)

• Une plus grande puissance de calcul.

Chapitre 5 : Réseaux de Neurones

63
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Pour dépasser ces challenges, les chercheurs dans le domaine ont

développés des variantes du Gradient Descent ainsi que d’autres

techniques pour calculer plus rapidement les dérivées sur des millions de

données. Parmi ces solutions on trouve :

• Mini-Batch Gradient Descent : Technique pour laquelle

le Dataset est fragmenté en petits lots pour simplifier le

calcul du gradient à chaque itération.

• Batch Normalization: Mettre à la même échelle toutes

les variables d’entrée et de sortie internes au Réseau de

Neurone pour éviter d’avoir des calculs de gradients

extrêmes.

• Distributed Deep Learning : Utilisation du Cloud pour

diviser le travail et le confier à plusieurs machines.

Sans plus tarder, voyons l’anatomie d’un Réseau de Neurones pour

démystifier ce concept.

Comprendre les Réseaux de Neurones

Voilà à quoi ressemble un Réseau de Neurones :

Vous remarquez un niveau d’entrées (input layer) à gauche, un niveau de

sorties (output layer) à droite, et plusieurs niveaux cachés entre deux.

Les petits ronds sont appelés les neurones et représentent des

fonctions d’activation. Pour un réseau de neurone basique, la fonction

Logistique est utilisée comme fonction d’activation. C’est pour cela que

nous l’avons vue dans le chapitre 4.

Commençons par analyser ce qui se passe dans 1 neurone.

Chapitre 5 : Réseaux de Neurones

64
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Réseau de Neurone à 1 Neurone : Le perceptron

Le réseau de Neurones le plus simple qui existe porte le nom de

perceptron. Il est identique à la Régression Logistique du chapitre 4.

Les entrées du neurone sont les features 𝒙 multipliées par des

paramètres 𝜽 à apprendre. Le calcul effectué par le neurone peut être

divisé en deux étapes :

1. Le neurone calcule la 𝒔𝒐𝒎𝒎𝒆 𝒛 de toutes les entrées 𝒛 =

 ∑ 𝒙𝜽. C’est un calcul linéaire

2. Le neurone passe z dans sa fonction d’activation. Ici la

fonction sigmoïde (fonction Logistique). C’est un calcul

non-linéaire.

Note :

On utilise souvent d’autres fonctions d’activation que la fonction

sigmoïde pour simplifier le calcul du gradient et ainsi obtenir des cycles

d’apprentissage plus rapides :

• La fonction tangente hyperbolique tanh (𝑧)

• La fonction 𝑅𝑒𝑙𝑢(𝑧)

Réseaux à plusieurs neurones : le Deep Learning

Pour créer un Réseaux de Neurones, il suffit de développer plusieurs de

ces perceptrons et de les connecter les uns aux autres d’une façon

particulière :

Chapitre 5 : Réseaux de Neurones

65
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

• On réunit les neurones en colonne (on dit qu’on les réunit

en couche, en layer). Au sein de leur colonne, les

neurones ne sont pas connectés entre eux.

• On connecte toutes les sorties des neurones d’une colonne

à gauche aux entrées de tous les neurones de la colonne

de droite qui suit.

On peut ainsi construire un réseau avec autant de couches et de neurones

que l’on veut. Plus il y a de couches, plus on dit que le réseau est

profond (deep) et plus le modèle devient riche, mais aussi difficile à

entraîner. C’est ça, le Deep Learning.

Voici un exemple d’un réseau à 5 neurones (et 3 layers). Tous les layers

entre la couche d’entrée et la couche de sortie sont dits cachés car nous

n’avons pas accès à leur entrées/sorties, qui sont utilisées par les layers

suivants.

Input
layer

Output
layer

hidden
layer

Sortie

En
tr

ée
s

Dans les détails, un réseau plus simple (à 3 neurones) nous donnerait la

sortie 𝒂𝟑 = 𝝈(𝜽𝟏𝒂𝟏 + 𝜽𝟐𝒂𝟐) où 𝜽𝟏 et 𝜽𝟐 sont les coefficients liés aux

connections entre neurones 𝒂𝟏 → 𝒂𝟑 et 𝒂𝟐 → 𝒂𝟑. Ce sont les paramètres

de notre modèle.

Dans le réseau suivant, on a donc 6 paramètres (que je différencie par les

couleurs, la réelle annotation des paramètres étant plus complexe).

Chapitre 5 : Réseaux de Neurones

66
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

C’est comme le cerveau humain ?

On a longtemps fait le rapprochement entre le cerveau humain et les

Neural Network pour démontrer la puissance de ces algorithmes. Voici

l’analogie qui est encore aujourd’hui présentée aux novices :

La fonction d’activation produit une sortie si les entrées qu’elle reçoit

dépassent un certain seuil, à la manière qu’un neurone biologique produit

un signal électrique en fonction des stimulus qu’il reçoit aux Dendrites

(ce sont les entrées du neurone).

Dans un Neurone, ce signal circule jusqu’aux différents terminaux de

l’axone pour être transmis à d’autres neurones, tout comme la fonction

activation envoie sa sortie aux neurones du niveau suivant.

En réalité, les Réseaux de Neurones n’ont rien à voir avec le cerveau

humain. Désolé…

Chapitre 5 : Réseaux de Neurones

67
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Un Réseau de Neurone n’est en fait qu’une énorme composée de milliers

de fonctions mathématiques, et aujourd’hui les neuroscientifiques ont

démontré que le fonctionnement du cerveau dépasse de loin l’architecture

« simpliste » des réseaux de neurones.

Pourquoi utilise-t-on alors l’expression de Réseau de Neurone ?

Sûrement parce que l’analogie avec les neurones facilite la

compréhension de ce type de modèle, mais également parce que

l’utilisation de ce Buzz word a permis de solliciter l’intérêt des

journalistes et des entreprises dans les années 2010. Une histoire de

marketing…

L’entraînement d’un Réseau de Neurone

Rappelez-vous : Pour résoudre un problème de Supervised Learning, il

vous faut les 4 éléments suivants.

1. Un Dataset

2. Un Modèle et ses paramètres

3. Une Fonction Coût et son gradient

4. Un Algorithme de minimisation (Gradient Descent)

• Pour le Dataset, pas de problème, il suffit de disposer d’un tableau

(𝑿, 𝒚) comme pour les autres problèmes. Les features (𝒙𝟏, 𝒙𝟐, 𝒙𝟑, …) sont

distribuées à l’entrée du réseau (dans le premier layer)

• Pour programmer le Modèle, il faut emboîter les fonctions des

différent niveaux d’activation les unes dans les autres comme je l’ai

montré plus haut pour l’exemple des 3 neurones. C’est ce qu’on

appelle Forward Propagation (faire le chemin des entrée 𝑿 vers la

sortie 𝒚).

• Pour exprimer la Fonction Coût et son gradient, c’est

mathématiquement délicat. Il faut calculer la contribution de chaque

neurone dans l’erreur finale. Tout ce que vous avez à savoir, c’est que

cela est possible avec une technique appelée Back Propagation (faire

le chemin dans le sens inverse : 𝒚 vers 𝑿).

• Enfin, pour minimiser la Fonction Coût, il suffit d’utiliser Gradient

Descent en utilisant les gradients calculés avec Back Propagation. Le

Gradient Descent en lui-même n’est pas différent de celui que nous

avons vu dans le chapitre 2 (bonne nouvelle).

Chapitre 5 : Réseaux de Neurones

68
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Programmer votre premier Réseau de Neurones

pour identifier des espèces d’Iris.

Normalement, on développe des Réseaux de Neurones avec un

Framework comme Tensorflow, mais l’apprentissage de cet outil

dépasse un peu le cadre de ce livre. Cependant, je veux bien me faire

violence en vous montrant comment faire avec Sklearn ☺. Pour cela, il

faudra importer MLPClassifier (qui signifie : Multi-Layer Perceptron

Classifier).

Cette fois, je vous propose de développer un programme capable de

reconnaitre une espèce parmi plusieurs de la famille des Iris. L’algorithme

utilise 4 features pour effectuer son calcul :

• 𝒙𝟏 : La longueur du pétale

• 𝒙𝟐 : La largeur du pétale

• 𝒙𝟑 : La longueur du sépale

• 𝒙𝟒 : La largeur du sépale

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.neural_network import MLPClassifier

charger les données
iris = load_iris()

X = iris.data
y = iris.target

X.shape # notre Dataset comprend 150 exemples et 4 variables

Visualisation des donées
colormap=np.array(['Red','green','blue'])
plt.scatter(X[:,3], X[:,1], c = colormap[y])

Pour développer un réseau à 3 hidden layers et 10 neurones dans chaque

layer, j’utilise le code suivant : hidden_layer_sizes=(10, 10, 10)

Création du modele
model = MLPClassifier(hidden_layer_sizes=(10, 10, 10), max_iter=1000)
model.fit(X, y)
model.score(X, y)

Chapitre 5 : Réseaux de Neurones

69
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Normalement, vous devriez obtenir un score de 98% pour votre Neural

Network. Cela signifie que la machine arrive à prédire la bonne espèce de

fleur 98% du temps.

Résumé de l’apprentissage supervisé

C’est avec les Réseaux de Neurones que s’achève ces 4 chapitres sur

l’apprentissage supervisé, qui est la technique la plus utilisée en

Machine Learning et en Deep Learning. Rappelez-vous qu’il existe 2

familles de problèmes dans l’apprentissage supervisé :

• Les Régressions

• Les Classifications

Pour résoudre ces problèmes, ne perdez jamais de vue les 4 étapes

essentielles pour développer votre modèle :

1. Dataset

2. Modèle

3. Fonction Coût

4. Algorithme de minimisation

Avec Sklearn, vous pouvez développer des modèles de Machine Learning

simplement en utilisant les fonctions que nous avons vues et qui intègrent

directement les étapes 3 et 4. Il ne vous reste alors qu’à :

1. Importer un Dataset

2. Choisir un modèle parmi ceux proposés par sklearn :
o SGDRegressor()

o KNeighborsClassifier()

o MLPClassifier()

o Etc…

3. Utiliser la fonction model.fit pour effectuer l’apprentissage

Il existe beaucoup d’algorithmes de Régression et de Classification, je n’ai

pas parlé de Support Vector Machine ou bien de Random Forest, mais

vous pouvez trouver plus d’information à ce sujet sur machinelearnia.com

Dans le prochaine chapitre, vous allez découvrir une nouvelle technique

d’apprentissage, dont la méthodologie est bien différente de celle que

nous avons vue jusqu’à présent : L’apprentissage non-supervisé.

http://www.machinelearnia.com/

Chapitre 6 : Apprentissage Non-Supervisé

70
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Chapitre 6 :
Apprentissage Non-

Supervisé

Dans ce chapitre, vous allez découvrir la deuxième technique

d’apprentissage utilisée en Machine Learning : L’apprentissage non-

supervisé.

Vous allez apprendre l’algorithme le plus populaire dans cette technique :

le K-Mean Clustering, qui permet de segmenter des données clients

dans le monde du marketing, ou bien de faciliter la recherche scientifique

en associant ensemble des molécules/matériaux/phénomènes semblables.

Chapitre 6 : Apprentissage Non-Supervisé

71
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Unsupervised Learning

Le problème de l’Apprentissage Supervisé

D’un certain point de vue, l’apprentissage supervisé consiste à enseigner

à la machine des choses que nous connaissons déjà, étant donné que

nous construisons à l’avance un Dataset qui contient des questions 𝑿 et

des réponses 𝒚.

Que faire alors si vous disposez d’un Dataset sans valeur 𝒚 ? Que faire si

vous voulez que la machine vous aide à compléter vos connaissances en

apprenant certaines choses que vous ignorez ?

Rappelez-vous, dans le Chapitre 1, nous avons parlé d’apprendre la

langue chinoise à partir d’un livre de traduction (𝑥, 𝑦). Que faire alors si je

vous retire le bouquin et que je vous envoie vivre seul en Chine ?

Arriverez-vous à apprendre le chinois tout seul ? Il y a forcément un

moyen d’y parvenir, c’est ce qu’on appelle l’apprentissage non-supervisé

(Unsupervised Learning).

Chapitre 6 : Apprentissage Non-Supervisé

72
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Comment apprendre sans exemple de ce qu’il faut

apprendre ?

Regardez ces 6 photos. Pouvez-vous les regrouper en 2 familles selon leur

ressemblance ?

Bien sûr ! C’est même plutôt simple. Nul besoin de savoir s’il s’agit de

cellules animales, de bactéries ou de protéines pour apprendre à classer

ces images. Votre cerveau a en fait reconnu des structures communes

dans les données que vous lui avez montrées.

GROUPE A GROUPE B

Dans l’apprentissage non-supervisé, on dispose ainsi d’un Dataset (𝑥)

sans valeur (𝑦), et la machine apprend à reconnaitre des structures

dans les données (𝑥) qu’on lui montre.

On peut ainsi regrouper des donnés dans des clusters (c’est le

Clustering), détecter des anomalies, ou encore réduire la dimension

de données très riches en compilant les dimensions ensembles.

Chapitre 6 : Apprentissage Non-Supervisé

73
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Algorithme de K-Mean Clustering

Le K-Mean Clustering est sans doute l’algorithme le plus populaire pour

les problèmes de Clustering (regrouper des données selon leur structure

commune). Il est souvent utilisé en marketing pour cibler des groupes de

clients semblables pour certaines campagnes publicitaires.

L’algorithme fonctionne en 2 étapes répétées en boucle. On commence

par placer au hasard un nombre K de centres dans notre nuage de

points. Dans l’exemple ci-dessous, K=2. Ensuite :

- L’étape 1 consiste à rallier chaque exemple au centre le plus

proche. Après cette étape, nous avons K Clusters (ici 2 clusters)

- L’étape 2 consiste à déplacer les centres au milieu de leur Cluster.

On répète ainsi les étapes 1 et 2 en boucle jusqu’à ce que les centres ne

bougent plus.

Chapitre 6 : Apprentissage Non-Supervisé

74
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Programmer un K-Mean Clustering

La librairie Sklearn nous permet aussi de faire du Unsupervised Learning !

La fonction make_blobs permet de simuler des clusters dans un Dataset.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
from sklearn.cluster import KMeans

Pour cet exemple, nous allons créer un Dataset de 100 exemples à 2

features, en simulant 3 clusters.

Générer des données:
X, y = make_blobs(n_samples=100, centers = 3, cluster_std=0.5, random_state=0) #nb_feat
ures = 2 par défaut
plt.scatter(X[:,0], X[:, 1])

Dans le code ci-dessous, on entraîne un modèle de K-Mean Clustering à 3

centres (K=3). J’ai aussi affiché les résultats que l’on obtient avec K = 2

et K = 4.

Entrainer le modele de K-mean Clustering
model = KMeans(n_clusters=3)
model.fit(X)

Chapitre 6 : Apprentissage Non-Supervisé

75
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

#Visualiser les Clusters
predictions = model.predict(X)
plt.scatter(X[:,0], X[:,1], c=predictions)

K = 2 K = 3 K = 4

La prochaine fois que vous avez à disposition un tableau de données sur

vos clients, sur les caractéristiques d’un produit, ou sur des documents

que vous devez classer, pensez à utiliser le K-Mean Clustering pour laisser

la machine proposer sa méthode de classement.

Pour finir, prenons le Dataset des fleurs d’Iris que vous avez su classer

grâce à un réseau de neurones dans le chapitre 5 et voyons les clusters

produits par l’algorithme de K-Mean Clustering.

K-Mean ClusteringNeural Network

Les résultats sont très ressemblants, preuve qu’il est possible de faire de

bonnes classifications même avec des Datasets (𝑥) sans valeur (𝑦) en

utilisant l’apprentissage non-supervisé.

Chapitre 6 : Apprentissage Non-Supervisé

76
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Conclusion sur le Unsupervised Learning

Dans l’apprentissage supervisé, la machine reçoit un Dataset où les

exemples (𝒙) sont étiquetés d’une valeur (𝒚) (on appelle ça un Labelled

Dataset). Il est alors possible de trouver une relation générale qui relie (𝑥)

à (𝑦).

Dans l’apprentissage non-supervisé, nous ne pouvons pas faire cela,

parce qu’il manque la variable (𝑦) à notre Dataset. Il est donc Unlabelled.

Apprentissage Supervisé
Labelled Dataset (x, y)

Apprentissage Non-Supervisé
Unlabelled Dataset (x)

Mais cela ne nous empêche pas de pouvoir segmenter le Dataset en

différents Clusters grâce au K-Mean Clustering, ou bien de détecter des

anomalies en calculant des densités de probabilités (dont nous n’avons

pas parlé). Avec d’autres algorithmes (le Principal Component Analysis)

on peut aussi réduire efficacement les dimensions d’un Dataset.

Avec ces méthodes, il est possible de segmenter un marché, de

développer des systèmes de détection de fraude bancaire, ou d’aider la

recherche scientifique.

Maintenant que vous connaissez les principaux outils du Machine

Learning, il est temps d’apprendre comment se servir de ces outils pour

résoudre de vrais problèmes. C’est l’objet du chapitre final de ce livre !

Chapitre 7 : Comment gérer un projet de Machine Learning

77
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Chapitre 7 : Comment
gérer un projet de
Machine Learning

Votre voyage arrive à sa fin. Au cours de ce livre, vous avez appris des

algorithmes puissants et réellement utilisés dans l’industrie pour

construire des modèles à partir de données. Mais un algorithme seul ne

résout aucun problème. Il est temps d’apprendre comment utiliser vos

connaissances pour résoudre des problèmes. Dans ce chapitre, vous

allez apprendre :

• Comment préparer votre Dataset

• Comment lutter contre Le phénomène d’Over fitting

• Comment diagnostiquer un modèle de Machine Learning

avec le Train set et Test Set

• Le cycle de développement d’un modèle de Machine

Learning

Chapitre 7 : Comment gérer un projet de Machine Learning

78
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

L’erreur que font la majorité des Novices

Beaucoup de gens travaillent longtemps leur maitrise des algorithmes au

détriment de leur compétence à résoudre des problèmes.

Pour mener à bien un projet de Machine Learning, il ne suffit pas de

connaitre des algorithmes (comme ceux que nous avons appris dans ce

livre) mais il faut également savoir comment se servir de ces algorithmes,

ce que peu de gens savent bien faire !

C’est ce que vous allez apprendre dans ce dernier chapitre, qui est l’un

des chapitres les plus importants de ce livre.

Un exemple de scénario typique

Votre patron souhaite automatiser la logistique de son usine. Il vous

confie un Dataset et vous demande de développer un modèle de Machine

Learning pouvant identifier différents fruits (pommes, poires, etc.) pour

que la machine puisse les ranger automatiquement dans la bonne boîte.

Vous entraînez un modèle complexe (par exemple un réseau de neurones

avec beaucoup de layers) suffisamment longtemps pour minimiser la

Fonction Coût et vous obtenez une précision de 99%. Bien joué !

Vous livrez ce modèle à votre patron, mais quelques jours plus tard il

revient très mécontent : votre modèle n’est pas aussi bon que vous le

prétendez, il a une précision de 70%.

Que s’est-il passé ?

Je vais vous dévoiler les causes plausibles et les erreurs à ne pas

commettre pour éviter ce genre de situation, puis les solutions à ces

challenges. Nous allons parler des 2 problèmes les plus courants en

Machine Learning :

- Une mauvaise préparation du Dataset

- Le problème d’Over fitting

Chapitre 7 : Comment gérer un projet de Machine Learning

79
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Le plus important, ce n’est pas l’algorithme, ce

sont les Données

Une étude menée en 2001 par Michelle Banko et Eric Brill montre que la

performance d’un programme de Machine Learning dépend avant tout de

la quantité de données que comporte votre Dataset. Cela explique en

partie l’obsession qu’on les géants du Web (les GAFAM) à récolter des

quantités colossales de données.

L’étude révèle aussi que beaucoup d’algorithmes de Machine Learning

sont similaires en terme de performance.

Conséquence : Si vous avez plus de données que votre concurrent, vous

êtes vainqueur, même si votre concurrent à un meilleur algorithme !

Mais avoir beaucoup de données ne suffit pas, il faut aussi avoir de

bonnes données et comprendre ces données. C’est ce point qui fait

défaut à de nombreux Data Scientists. Pourtant, l’étape de préparation

des données (Data pre-processing) représente le plus grand temps passé

sur un projet de Machine Learning, voyons pourquoi.

Data pre-processing: Comment préparer votre Dataset

Lorsque vous recevez un Dataset, il est impératif de procéder à quelques

retouches avant de commencer à faire du Machine Learning. Voici une

liste des actions à compléter pour bien préparer son Dataset :

• Il est fréquent qu’un Dataset contienne quelques anomalies, voire

des erreurs, qu’il faut supprimer pour ne pas biaiser

l’apprentissage de la machine (vous ne voudriez pas que la machine

apprenne quelque chose de faux).

• Il est aussi important de normaliser vos données, c’est-à-dire les

mettre sur une même échelle pour rendre l’apprentissage de la

machine plus rapide et aussi plus efficace.

Chapitre 7 : Comment gérer un projet de Machine Learning

80
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

• Si vous avez des valeurs manquantes, il faut être capable de leur

assigner une valeur défaut.

• Si vous avez des features catégoriales (exemple : homme/femme)

il faut les convertir en données numériques (homme=0, femme=1).

• Egalement, il est très important de nettoyer le Dataset des features

redondantes (qui ont une forte corrélation) pour faciliter

l’apprentissage de la machine.

• Finalement, un point qui peut faire toute la différence est la création

de nouvelles features, ce qu’on appelle feature engineering.

Exemple : Prenez un Dataset immobilier qui contient les features :

o 𝑥1 = 𝑙𝑜𝑛𝑔𝑢𝑒𝑢𝑟 𝑗𝑎𝑟𝑑𝑖𝑛

o 𝑥2 = 𝑙𝑎𝑟𝑔𝑒𝑢𝑟 𝑗𝑎𝑟𝑑𝑖𝑛

Alors il est possible de créer 𝑥3 = 𝑥1 × 𝑥2 qui équivaut à la surface du

jardin.

Typiquement, sklearn et pandas disposent des fonctions nécessaires

pour faire un bon data pre-processing. Pour charger un fichier Excel au

format csv dans Jupyter, utiliser la librairie pandas.

import pandas as pd

Dataset = pd.read_csv('dataset.csv')
print(Dataset.head()) # afficher le Dataset

Attention ! Le tableau que vous cherchez à importer doit convenir à un

certain format. Pour vos débuts, assurez-vous d’avoir un fichier Excel qui

ne contient que vos données (pas de notes ni commentaires) et qui

commence dès la colonne A ligne 1 :

Exemple à suivre

Exemple à NE PAS suivre

VS

Chapitre 7 : Comment gérer un projet de Machine Learning

81
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Vous pouvez ensuite utiliser certaines fonctions pour nettoyer votre

Dataset, convertir les catégories en valeurs numériques, et charger

votre Dataset dans une 𝒎𝒂𝒕𝒓𝒊𝒄𝒆 𝑿 et un 𝒗𝒆𝒄𝒕𝒆𝒖𝒓 𝒚 pour commencer le

Machine Learning !

Dataset = Dataset.fillna(value=99999) # assigner une valeur défaut
Dataset = pd.get_dummies(Dataset) # remplacer les catégories

y = Dataset['prix'].values # Créer le vecteur target y
X = Dataset.drop(['prix'], axis=1).values # Créer la matrice features X

L’expertise est cruciale

Jouer ainsi avec les données peut s’avérer dangereux si le Data Scientist

n’a pas de connaissances techniques sur l’application finale : finance,

médecine, ingénierie, climatologie, etc.

Exemple : En donnant le Dataset suivant à un modèle de Machine

Learning, vous obtiendrez une frontière de décision qui indique qu’il fait

chaud quand la température est supérieure à 5 °C…

Dans cette application aussi simple, vous avez une certaine expertise qui

vous permet de rejeter la réponse de la machine, et vous comprenez que

le Dataset a besoin d’être complété avec des données supplémentaires.

Etes-vous certain d’avoir ce niveau d’expertise en médecine pour

développer un modèle qui pourrait décider de la vie d’un patient ?

Conclusion : vous serez un meilleur Data Scientist en travaillant sur les

projets qui se rattachent à vos compétences techniques.

Chapitre 7 : Comment gérer un projet de Machine Learning

82
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Les données doivent toujours venir de la même

distribution

Une dernière erreur que je veux partager avec vous et qui peut causer

une chute de performance assez importante est l’utilisation d’un modèle

de machine Learning sur des données provenant d’une autre

distribution que les données sur lesquelles la machine a été entraînée.

Par exemple, si vous développez un modèle pour reconnaitre des poires

en donnant à la machine des photos Haute Définition de poires bien

droites et sans taches, mais que la machine utilise ensuite une mauvaise

caméra qui déforme les couleurs et qui voit les poires toutes empilées les

unes sur les autres, le modèle ne pourra pas reconnaitre les features qu’il

a appris durant l’entrainement avec la même précision.

Ce que vous aviez donné à
apprendre

Ce que la machine voit
après l’apprentissage

Conclusion

Il est important de bien préparer son Dataset, en supprimant les

défauts qu’il contient, en s’assurant qu’il représente des données

provenant de la même distribution que pour l’application finale, et en

comprenant en profondeur le sens des données dont on dispose.

Le travail de préparation des données prend en général 80% du temps

de travail d’un Data Scientist, mais s’il est bien fait, alors vous n’avez

plus aucun problème par la suite.

Plus aucun problème… sauf un : L’Over fitting. J’ai voulu garder ce

point-là pour le sprint final du livre ! Vous êtes prêts ?

Chapitre 7 : Comment gérer un projet de Machine Learning

83
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Over fitting et Régularisation

Dans les chapitres d’apprentissage supervisé, nous avons développé des

modèles en cherchant à minimiser les erreurs avec le Dataset. J’ai

même affirmé (page 15) qu’un bon modèle nous donne de petites

erreurs. En fait, ce n’est pas si simple…

Que pensez-vous des deux modèles ci-dessous ?

Dataset (x, y) Modèle A Modèle B

J = 0J ≥ 0

Le modèle B ne donne aucune erreur par rapport au Dataset, donc

d’après ce que nous avons vu, il devrait être parfait !

Pourtant, le modèle A semble plus convaincant, alors que celui-ci donne

une Fonction Coût plus élevée.

Le modèle B souffre ici d’un problème appelé Over fitting, qui est un

phénomène très courant en Machine Learning et qu’il vous faut

absolument éviter.

Over fitting : A vouloir aller trop loin, on va TROP loin.

On parle d’Over fitting pour dire que le modèle s’est trop spécialisé sur

les données qui lui ont été fournies et a perdu tout sens de

généralisation.

Un Over fitting survient le plus souvent quand un modèle trop complexe

(avec trop de paramètres ou trop de features) a été entraîné. Dans ce

cas, le modèle a certes un faible coût 𝑱(𝜽), mais il a aussi ce qu’on appelle

une grande variance. Conséquence : un modèle moins performant que

prévu quand on le soumet à de nouvelles données et une machine qui

confond les pommes et les poires.

Chapitre 7 : Comment gérer un projet de Machine Learning

84
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Modèle A Modèle B

Sur le Dataset B était meilleur que A.
Mais sur de nouvelles données, A est meilleur que B

On pourrait alors se dire qu’il suffit de développer des modèles moins

complexes avec moins de features… Et Pouf ! Plus de problème de

variance !

C’est vrai, Mais on risque alors d’avoir un modèle erroné qui manque de

précision. On appelle ça Under fitting, et on dit que le modèle a un

grand biais.

Ce problème touche à la fois les régressions et les classifications :

Under Fitting
Grand Biais

Over Fitting
Grande Variance

Le bon modèle

R
eg

re
ss

io
n

s
C

la
ss

if
ic

a
ti

o
n

Comment trouver alors le juste milieu entre biais et variance ? C’est une

des grandes questions à laquelle sont confrontés les Data Scientists.

Chapitre 7 : Comment gérer un projet de Machine Learning

85
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Il existe une méthode qui permet de garder toutes les features d’un

modèle tout en régulant l’amplitude des paramètres 𝜽. Cette méthode

porte justement le nom de Régularisation.

La Régularisation

La régularisation permet de limiter la variance d’un modèle sans sacrifier

son biais. Pour cela, différentes techniques existent:

1. On peut légèrement pénaliser la Fonction Coût du modèle en

ajoutant un terme de pénalité sur ses paramètres. Pour la

régression linéaire, la Fonction Coût devient alors :

𝑱(𝜽) =
𝟏

𝟐𝒎
 ∑(𝑭(𝑿) − 𝒀)𝟐 + 𝝀 ∑ 𝜽𝟐 (𝑅𝑖𝑑𝑔𝑒 𝑜𝑢 𝐿2 𝑅é𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛)

Le facteur de régularisation 𝝀 correspond au niveau de pénalité : s’il

est trop grand, on risque l’Under fitting, et s’il est trop faible, c’est

l’Over fitting. On peut le contrôler directement dans Sklearn.

2. Pour le K-Nearest Neighbour, on peut augmenter la valeur de K

(nombre de voisins). Le modèle ne tient alors pas compte des

anomalies noyées dans la masse.

3. Pour les Réseaux de Neurones, une technique nommée Dropout

pénalise le modèle en désactivant aléatoirement certains neurones

à chaque cycle de Gradient Descent. Le Réseau perd alors

légèrement de ses facultés et est moins sensible aux détails.

Voici ce que la Régression linéaire classique vous donnera en développant

un modèle polynômial de degré 10 sur le Dataset suivant :

Chapitre 7 : Comment gérer un projet de Machine Learning

86
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

Creation d'un Dataset x, y
np.random.seed(0)
x = np.linspace(0, 5, 10)
y = x - 2 * (x ** 2) + 0.5 * (x ** 3) + np.random.normal(-2, 2, 10)
plt.scatter(x, y)

Creation de plusieurs features pour notre modele
X = x[:, np.newaxis]
X = PolynomialFeatures(degree=10, include_bias=False).fit_transform(X)
X.shape

Entraînement du modele. Ici on utilise les Equations Normales (LinearRegression)
Les Equations normales reposent sur la méthode des moindres carrées, c’est plus
rapide que le Gradient Descent.
model = LinearRegression()
model.fit(X,y)
print('Coeff R2 =', model.score(X, y))
plt.scatter(x, y, marker='o')
plt.plot(x, model.predict(X), c='red')

Dans Sklearn, vous pouvez développer un modèle avec régularisation

grâce au modèle Ridge : Sklearn.linear_model.Ridge. Le modèle a

certes un coefficient 𝑅2 plus faible, mais il produit une meilleure

généralisation et fera donc moins d’erreurs sur les données futures.

from sklearn.linear_model import Ridge

ridge = Ridge(alpha=0.1) # alpha est le facteur de régularisation.
ridge.fit(X,y)
print('Coeff R2 =', ridge.score(X, y))

plt.scatter(x, y, marker='o')
plt.plot(x, ridge.predict(X), c = 'green')

Chapitre 7 : Comment gérer un projet de Machine Learning

87
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Vous savez maintenant que la performance réelle d’un modèle de

Machine Learning ne repose pas simplement sur sa Fonction Coût : vous

risquez l’Over fitting chaque fois qu’un modèle se spécialise trop sur les

données qu’on lui donne à étudier.

Mais comment être sûr de la performance que votre modèle aura sur des

données futures, c’est-à-dire des données sur lesquelles il n’aura pas

été entraîné ?

La réponse est dans la question ! Il faut entraîner votre modèle sur une

partie seulement du Dataset et utiliser la seconde partie pour évaluer la

vraie performance de notre modèle. On appelle cela le Train set et le Test

set.

Diagnostiquer un modèle de Machine Learning

Train set et Test set

La bonne manière de mesurer la performance de votre modèle de

Machine Learning est de tester celui-ci sur des données qui n’ont pas

servi à l’entraînement. On divise ainsi le Dataset aléatoirement en deux

parties avec un rapport 80/20 :

• Train set (80%), qui permet à la machine d’entraîner un

modèle.

• Test set (20%), qui permet d’évaluer la performance du

modèle.

Chapitre 7 : Comment gérer un projet de Machine Learning

88
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Pour créer un Train set et Test set à partir de notre Dataset, on utilise la

fonction train_test_split de Sklearn :

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_regression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split

Creation d'un Dataset Aleatoire
np.random.seed(0)
x, y = make_regression(n_samples=100, n_features=1, noise=10)
y = np.abs(y) + y + np.random.normal(-5, 5, 100)
plt.scatter(x, y)

Creation des Train set et Test set a partir du Dataset
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

Visualisation des Train set et Test set
plt.scatter(x_train, y_train, c='blue', label='Train set')
plt.scatter(x_test, y_test, c='red', label='Test set')
plt.legend()

On peut ensuite entraîner notre modèle sur le 𝑻𝒓𝒂𝒊𝒏 𝑺𝒆𝒕: (𝒙𝒕𝒓𝒂𝒊𝒏, 𝒚𝒕𝒓𝒂𝒊𝒏), puis

l’évaluer sur le 𝑻𝒆𝒔𝒕 𝑺𝒆𝒕: (𝒙𝒕𝒆𝒔𝒕, 𝒚𝒕𝒆𝒔𝒕) .

Chapitre 7 : Comment gérer un projet de Machine Learning

89
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Dans le code ci-dessous je décide de mettre en pratique tout ce que nous

avons vu : Je crée plusieurs features polynômiales (degré 10) et j’utilise

la régularisation de Ridge pour éviter l’Over fitting. On obtient un score de

92% pour l’entraînement et un score de 91% pour l’évaluation sur des

données nouvelles.

X = PolynomialFeatures(degree = 10, include_bias=False).fit_transform(x)

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

from sklearn.linear_model import Ridge

model = Ridge(alpha = 0.1, random_state=0)
model.fit(x_train, y_train)

print('Coefficient R2 sur Train set:', model.score(x_train, y_train))
print('Coefficient R2 sur Test set:', model.score(x_test, y_test))

plt.figure(figsize=(8,6))
plt.scatter(x, y, c='blue')
a = np.linspace(-2, 2, 100).reshape((100, 1))
A = PolynomialFeatures(degree = 10, include_bias=False).fit_transform(a)
plt.plot(a, model.predict(A), c = 'green', lw=2)

Chapitre 7 : Comment gérer un projet de Machine Learning

90
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Repérer un problème d’Under fitting ou d’Over fitting

La technique la plus efficace pour repérer si votre modèle a un problème

de biais (Under fitting) ou de variance (Over fitting) consiste à analyser

les erreurs (la Fonction Coût) sur le Train set 𝑱(𝜽)𝒕𝒓𝒂𝒊𝒏 et le Test set

𝑱(𝜽)𝒕𝒆𝒔𝒕 :

• Si les erreurs sont grandes sur le Train set et le Test

Set, alors le modèle a un grand biais, et il faut développer

un modèle plus complexe ou développer plus de features.

• Si les erreurs sont faibles sur le Train set, mais sont

grandes sur le Test set, alors le modèle a une grande

variance.

Nombre de paramètres

VarianceBiais

Que faire en cas d’Over fitting ou Under fitting ?

Dans le cas où votre modèle a un grand biais (Under fitting) vous

pouvez :

• Créer un modèle plus complexe, avec plus de paramètres.

• Créer plus de features à partir des features existantes.

• Entraîner votre modèle plus longtemps.

• Diminuer le Learning Rate du Gradient Descent (si le

Learning Rate est trop grand, la Fonction Coût ne converge

pas)

• Récolter plus de features dans les données (parfois une

feature importante n’a pas été récoltée)

Chapitre 7 : Comment gérer un projet de Machine Learning

91
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

A l’inverse, si votre modèle a une grande variance (Over fitting) vous

pouvez :

• Utiliser la régularisation

• Utiliser un modèle avec moins de paramètres ou un

Dataset avec moins de features

• Collecter plus de données (avoir un Dataset plus grand

permet de développer un modèle qui généralise mieux)

Cycle de développement du Machine Learning

Développer un modèle de Machine Learning ne se fait pas du premier

coup. On commence souvent avec une première idée de modèle simple

et rapide à développer, puis on analyse si on a une variance ou un biais

et on tente une nouvelle idée pour corriger les problèmes rencontrés,

etc.

Le diagramme de la page suivante résume le cycle de développement du

Machine Learning avec toutes les étapes que vous avez apprises, et

marque la fin de ce chapitre final.

Notre voyage s’achève ici, mais j’espère que vous continuerez à tracer

votre chemin dans le Machine Learning après avoir lu ce livre, et me

soutenir sur machinelearnia.com et YouTube est le meilleur moyen de me

remercier pour ce livre gratuit.

N’omettez pas de lire la conclusion du livre, je garde pour vous un petit

bonus !

Idée

CodeEvaluation

https://machinelearnia.com/
https://www.youtube.com/channel/UCmpptkXu8iIFe6kfDK5o7VQ

Chapitre 7 : Comment gérer un projet de Machine Learning

92
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Résumé des étapes de développement en Machine

Learning

Importer un
Dataset (x, y)

Pre-process le
Dataset

Diviser
Train Set

Validation Set

Entrainer un
modèle

(Train Set)

Evaluer le Modèle
(Validation Set)

Under fitting
(grand biais)

Over fitting
(grande variance)

Modèle Plus
complexe

Entrainement plus
long

Learning rate plus
petit

Modèle
Moins complexe

Collecter plus de
données

Régularisation

NOUVELLE IDÉE

IDÉE

CONCLUSION

93
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

CONCLUSION

Bravo ! Vous avez lu ce livre en entier, ce qui vous distingue de la

majorité des gens qui commencent un livre sans jamais le finir. Le simple

fait de l’avoir terminé doit vous conforter dans l’idée que vous avez les

capacités de devenir un excellent Data Scientist !

Le Monde, et tout particulièrement la France, manque cruellement de

Data Scientists ! Il y a énormément de places à prendre sur le marché

du travail, mais d’ici 5 ans cela aura certainement changé.

Agissez donc MAINTENANT. Utilisez les techniques que vous avez

apprises pour des tâches au travail et continuer d’apprendre grâce à mon

site Internet : machinelearnia.com. Pour finir, je vous livre quelques

conseils et un formulaire de Machine Learning.

Guillaume Saint-Cirgue

Du fond du cœur, MERCI.

Lexique : Formule Résumé du Machine Learning

94
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Lexique : Formule Résumé du Machine
Learning

Différences entre Data Science, Machine Learning et

Deep Learning

L’Intelligence Artificielle est l’ensemble des techniques et théories qui

cherchent à développer des modèles capables de simuler le

comportement humain.

Parmi ces techniques, on trouve le Machine

Learning, très populaire depuis 2010. Le Deep

Learning est un domaine du Machine Learning qui

est focalisé sur le développement des réseaux de

neurones et qui fait face à d’autres défis que ceux

du machine Learning. Parmi ces défis, comment

entrainer des modèles avec des millions de

paramètres et des milliards de données dans des

temps raisonnables.

On dit souvent que ce sont des disciplines de Data Science parce qu’elles

utilisent des données pour construire les modèles. Mais en Data Science,

on analyse plus souvent des données pour en créer un modèle en réaction

à ces données, alors qu’en Machine Learning on créé un programme qui

acquiert une aptitude : conduire une voiture, voir des objets, etc.

Dataset :

Tableau de données (𝑿, 𝒚) qui contient 2 types de variables :

- Target 𝒚

- Features 𝑿

On note 𝒎 le nombre d’exemples que contient le tableau (le nombre de

lignes) et 𝒏 le nombre de features (le nombre de colonnes 𝑋).

Ainsi :

- 𝑿 est une matrice à 𝒎 lignes et 𝒏 colonnes. 𝑿 ∈ ℝ𝒎×𝒏

- 𝒚 est un vecteur à 𝒎 lignes. 𝒚 ∈ ℝ𝒎

Pour désigner la feature 𝒋 de l’exemple 𝒊 on écrit 𝒙𝒋
(𝒊)

Lexique : Formule Résumé du Machine Learning

95
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Modèle :

Fonction mathématique qui associe 𝑿 à 𝒚, telle que 𝒇(𝑿) = 𝒚. Un bon

modèle doit être une bonne généralisation, c’est-à-dire qu’il doit fournir

de petites erreurs entre 𝒇(𝒙) et 𝒚 sans être sujet à l’Over fitting.

On note 𝜽 le vecteur qui contient les paramètres de notre modèle. Pour

une régression linéaire, la formulation matricielle de notre modèle

devient : 𝑭(𝑿) = 𝑿. 𝜽

Fonction Coût :

La Fonction Coût 𝑱(𝜽) mesure l’ensemble des erreurs entre le modèle et le

Dataset. De nombreux métriques d’évaluations peuvent être utilisés

pour la Fonction Coût :

- Mean Absolute Error (MAE)

- Mean Squared Error (MSE) : Utilisée dans le Chapitre 3

- Root Mean Squared Error (RMSE)

- Accuracy : pour les classifications

- Precision

- Recall

- F1 score.

Gradient de la Fonction Coût
𝝏 𝑱(𝜽)

𝝏 𝜽

Gradient Descent :

Algorithme de minimisation de la Fonction Coût. Il existe beaucoup de

variante de cet algorithme :

- Mini Batch Gradient Descent

- Stochastic Gradient Descent

- Momentum

- RMSProp

- Adam

Lexique : Formule Résumé du Machine Learning

96
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Variance :

C’est l’erreur due à un modèle trop sensible aux détails et incapable de

généraliser, ce qui donne lieu à un Over fitting.

Biais :

C’est l’erreur due à un modèle erroné qui manque de précision et donne

lieu à un Under fitting.

Résumé de la Régression Linéaire

𝑫𝒂𝒕𝒂𝒔𝒆𝒕: (𝑋, 𝑦) 𝑎𝑣𝑒𝑐 𝑋, 𝑦 ∈ ℝ𝑚×𝑛

𝑴𝒐𝒅è𝒍𝒆: 𝐹(𝑋) = 𝑋. 𝜃

𝑭𝒐𝒏𝒄𝒕𝒊𝒐𝒏 𝑪𝒐û𝒕: 𝐽(𝜃) =
1

2𝑚
 ∑(𝐹(𝑋) − 𝑦)2

𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕:
𝜕 𝐽(𝜃)

𝜕 𝜃
=

1

𝑚
 𝑋𝑇 . (𝐹(𝑋) − 𝑦)

𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕 𝑫𝒆𝒔𝒄𝒆𝒏𝒕: 𝜃 = 𝜃 − 𝛼 ×
𝜕 𝐽(𝜃)

𝜕 𝜃

Lexique : Formule Résumé du Machine Learning

97
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Résumé de la Régression Logistique

𝑴𝒐𝒅è𝒍𝒆: 𝜎(𝑋. 𝜃) =
1

1 + 𝑒−𝑋.𝜃

𝑭𝒐𝒏𝒄𝒕𝒊𝒐𝒏 𝑪𝒐û𝒕: 𝐽(𝜃) =
− 1

𝑚
 ∑ 𝑦 × log(𝜎(𝑋. 𝜃)) + (1 − 𝑦) × log(1 − 𝜎(𝑋. 𝜃))

𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕:
𝜕 𝐽(𝜃)

𝜕 𝜃
=

1

𝑚
 𝑋𝑇 . (𝜎(𝑋. 𝜃) − 𝑦)

𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕 𝑫𝒆𝒔𝒄𝒆𝒏𝒕: 𝜃 = 𝜃 − 𝛼 ×
𝜕 𝐽(𝜃)

𝜕 𝜃

Code pour visualiser les courbes d’apprentissage sur

une régression linéaire (Chapitre 3)

Copier/coller le code suivant dans Jupyter ou bien Spyder pour visualiser

les courbes d’apprentissage.

Importer les libraires :

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_regression

Générer un Dataset aléatoire

np.random.seed(4)
n = 1
m = 100

x, y = make_regression(n_samples=m, n_features=n, noise=10)
y = y + 100
plt.scatter(x, y)
y = y.reshape(y.shape[0], 1)

#ajouter le Bias a X
X = np.hstack((np.ones(x.shape), x))
X.shape

Définir sous forme matricielle le modèle, la Fonction Coût et le gradient.

On définit 𝜽 le vecteur qui contient les paramètres 𝒂 et 𝒃.

𝑭 = 𝑿. 𝜽

Lexique : Formule Résumé du Machine Learning

98
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

𝑱(𝜽) =
𝟏

𝟐𝒎
∑(𝑿. 𝜽 − 𝒚)𝟐

𝑮𝒓𝒂𝒅(𝜽) =
𝟏

𝒎
𝑿𝑻. (𝑿. 𝜽 − 𝒚)

#definir la fonction modele
def model(X, theta):
 # x shape: (m, n)
 # theta shape: (n,1)
 return X.dot(theta) #shape: (m, 1)

#definir la fonction cout
def cost_function(X, y, theta):
 m = len(y)
 J = 1/(2*m) * np.sum((model(X, theta) - y)**2)
 return J

#definit la fonction gradient
def gradient(X, y, theta):
 return 1/m * X.T.dot((X.dot(theta) - y))

On définit la fonction Gradient Descent avec une boucle for :

For all itérations :

𝜽 = 𝜽 − ∝ 𝑮𝒓𝒂𝒅(𝜽)

#algorithme de Gradient Descent
def gradient_descent(X, y, theta, learning_rate =0.001, iterations = 1000):
 m = len(y)
 cost_history = np.zeros(iterations)
 theta_history = np.zeros((iterations, 2))

 for i in range(0, iterations):
 prediction = model(X, theta)
 theta = theta - learning_rate * gradient(X, y, theta)
 cost_history[i] = cost_function(X, y, theta)
 theta_history[i,:] = theta.T

 return theta, cost_history, theta_history

On passe à l’entraînement du modèle, puis on visualise les résultats.

utilisation de l'algorithme

np.random.seed(0)
theta = np.random.randn(2, 1)

iterations = 10
learning_rate = 0.3
theta, cost_history, theta_history = gradient_descent(X, y, theta, learning_rate=learni
ng_rate, iterations = iterations)

#visualisation des courbes d'apprentissage
fig,ax = plt.subplots(figsize=(12,8))

Lexique : Formule Résumé du Machine Learning

99
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

ax.set_ylabel('J(Theta)')
ax.set_xlabel('Iterations')
_=ax.plot(range(iterations),cost_history)

visualisation du modele au cours de son apprentissage
fig,ax = plt.subplots(figsize=(12,8))
_=ax.plot(x, y, 'b.')
for i in range(iterations):
 _=ax.plot(x, model(X, theta_history[i]), lw=1)

Autres Algorithmes de Machine Learning:

Pour votre culture, voici d’autres algorithme de Machine Learning très

populaires. Vous pouvez les apprendre en détail sur machinelearnia.com.

- Support Vector Machine : Consiste à trouver la frontière de

décision linéaire qui éloigne le plus les classes l’unes de l’autres. Il

est facile de créer des modèles aux dimensions infinies avec cette

méthode.

- Decision Tree : Consiste à ordonner une série de tests dans un

arbre pour arriver à une conclusion.

- Random Forest : Un ensemble de Decision Tree construits

aléatoirement (avec Bootstrap) qui chacun émet sa solution au

problème. La solution majoritairement choisie par la forêt l’emporte.

- Naive Bayes : Repose sur l’inférence de Bayes (probabilités

conditionnelles)

- Anomaly Detection Systems : Algorithme de Unsupervised

Learning qui consiste à détecter des anomalies grâce aux densités

de probabilités.

- Principal Component Analysis : Technique de réduction de

dimension qui consiste à réduire le nombre de variables de votre

Dataset en créant des variables non-corrélées.

https://machinelearnia.com/

Lexique : Formule Résumé du Machine Learning

100
Tous droits réservés © 2019 Guillaume Saint-Cirgue

machinelearnia.com

Mes 3 conseils perso pour le Machine Learning

Conseil #1 : Notez toujours les dimensions de votre problème

100% des Data Scientists ont déjà fait cette erreur : ne pas noter sur

une feuille de papier les dimensions des matrices du problème.

A un moment ou un autre, vous aurez un bug parce que vous tentez de

multiplier deux matrices A et B aux dimensions incompatibles. Il est alors

très utile de vérifier les dimensions des matrices du Dataset, Train set,

Test set, et des paramètres en utilisant la fonction numpy.shape pour les

comparer à vos calculs.

Conseil #2 : Loi de Pareto

Vous connaissez la Loi de Pareto ? 80% des effets sont le produit de

20% des causes.

J’ai pu observer que ce principe s’applique très souvent en Machine

Learning : 80% des erreurs de votre modèle sont produites par 20% des

prédictions, ou bien 20% des points du Dataset, ou bien 20% des hyper-

paramètres, etc. De la même manière, 80% de la performance de votre

programme est atteinte après seulement 20% de travail.

Faites alors le diagnostic de votre système en cherchant les points 80/20

Si vous voulez vous améliorer de 80% en produisant seulement 20%

d’efforts. Bonne chance !

Conseil #3 : Philosophez et ne soyez pas obsédés par la

performance

En Machine Learning, il est important de savoir prendre du recul. Selon

l’application, une précision de 98% est aussi bien qu’une précision de

98,1%. Pourtant, beaucoup de Data Scientists peuvent perdre des

semaines à gagner ce petit 0,1%... pour pas grand-chose. Je vous invite

à philosopher, à garder l’esprit ouvert et à passer plus de temps à

chercher des solutions à d’autres problèmes.

Bonne chance à vous !

