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Introduction – Pourquoi devez-vous lire 
ce livre ? 
 

En 2019, Le Machine Learning est tout autour de nous. Il intervient 

chaque fois que nous cherchons un mot dans Google, une série sur Netflix, 

une vidéo sur YouTube, un produit sur Amazon. 

Grâce au Machine Learning, des millions de cancers peuvent être 

diagnostiqués chaque année, des milliards de spams et de virus 

informatiques sont bloqués pour protéger nos ordinateurs, et sans lui la 

voiture autonome n’existerait peut-être jamais. 

 

Pourtant le grand public, qui lui donne à tort le nom « Intelligence 

Artificielle », en ignore presque tout. Et il est bien connu que l’Homme a 

peur de ce qu’il ne comprend pas. 

En lisant ce guide, je vous invite à un voyage qui va vous permettre de 

briser la glace avec l’Intelligence Artificielle et d’apprendre réellement une 

nouvelle compétence professionnelle : Le Machine Learning. 
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Après avoir lu ce guide, vous ferez partie des pionniers d’un nouveau 

monde, vous donnant accès à des opportunités professionnelles 

extraordinaires, et vous aurez développé votre capacité à résoudre des 

problèmes. 

Quel que soit votre métier (Ingénierie, Marketing, Finance, ou même 

artiste) ce livre vous sera utile, j’en suis convaincu. 

 

 

Harvard Business Review, 2012 

 

 

Salaire de base moyen pour un Data Scientist à Paris. Glassdoor, 2019. 
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Qui suis-je ? 

Je m’appelle Guillaume Saint-Cirgue et je suis ingénieur en Machine 

Learning au Royaume-Uni. 

J’exerce ce métier alors que, comme 

vous peut-être, je n’ai pas eu la 

chance de recevoir des cours 

d’Intelligence Artificielle au lycée, ni 

même dans les études supérieures. 

 

J’ai dû tout apprendre de moi-même, 

en investissant mon temps et mon 

argent dans des formations du MIT et 

de Stanford et en passant des week-

end entiers à développer mes propres 

projets. 

Mais passionné par le Machine Learning, il n’a pas été difficile de laisser 

de côté les distractions pour me consacrer à mon développement 

personnel. 

 

A travers ce guide, je veux vous offrir ce que j’ai appris car le monde a 

urgemment besoin de se former en Intelligence Artificielle. 

Que vous souhaitiez changer de vie, de carrière, ou bien développer vos 

compétences à résoudre des problèmes, ce livre vous y aidera. 

C’est votre tour de passer à l’action ! 

 

Ce que vous allez apprendre dans les 7 prochains 

jours 

J’ai écrit ce livre en 7 chapitres qui retracent le cheminement naturel et 

logique pour apprendre le Machine Learning sans aucun prérequis. 

Je vous invite à lire un chapitre par jour, ce qui ne vous prendra pas plus 

d’une demi-heure par jour. 

Pour chaque chapitre, je me suis inspiré des meilleures formations qui 

existent à ce jour (parfois payantes) et que j’ai pu suivre (Stanford, MIT, 

UCL, …).  
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Jour 1 : Les fondations du Machine Learning 

Jour 2 : La Régression Linéaire 

Jour 3 : Votre premier programme de Machine Learning 

Jour 4 : La Régression Logistique et les Algorithmes de Classification 

Jour 5 : Les Réseaux de Neurones 

Jour 6 : Unsupervised Learning 

Jour 7 : Comment gérer un projet de Machine Learning 

 

En avant pour ce voyage qui changera peut-être votre vie comme il a pu 

changer la mienne ! 
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Chapitre 1 : Les 
fondations du Machine 

Learning 
 

 

 

 

 

 

 

Dans ce premier chapitre, nous allons voir : 

• Pourquoi le Machine Learning est vraiment utile 

• La définition du Machine Learning 

• Les 3 méthodes d’apprentissage 

• Les 2 applications les plus courantes en Machine Learning 

• Les 4 notions clefs qui s’appliquent à tout le Machine Learning 
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Comprendre pourquoi le Machine Learning est 

utilisé 

Pour comprendre au mieux ce qu’est le Machine Learning et comment cela 

fonctionne, il faut commencer par comprendre pourquoi il est utilisé. 

 

Nous, les êtres humains, sommes quotidiennement confronté à des 

problèmes que nous cherchons à résoudre. Par exemple : Comment 

construire un pont plus solide ? Comment augmenter nos bénéfices ? 

Comment éliminer le cancer ? Ou tout simplement quelle route emprunter 

pour aller au travail ? 

PROBLEME A RESOUDRE

 

 

Pour nous aider dans nos recherches, nous avons inventé l’ordinateur, 

qui permet de résoudre en quelques minutes des calculs qui nous 

prendraient des millions d’années à effectuer. Mais il faut savoir qu’un 

ordinateur ne sait en réalité faire qu’une chose : résoudre les calculs 

qu’on lui donne. 
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À partir de là, 2 situations possibles : 

1. On connait le calcul à effectuer pour résoudre notre problème.  

 

Dans ce cas, facile ! On entre ce calcul dans l’ordinateur, c’est 

ce qu’on appelle la programmation, et l’ordinateur nous 

donne le résultat. 

 

Exemple : 

• Déterminer la structure d’un pont 

 

2. On ne connait pas le calcul qui résout notre problème 

 

Dans ce cas... on est bloqué. Impossible de donner à un 

ordinateur un calcul que nous ne connaissons pas. 

 
C’est comme vouloir poster une lettre que nous 

n’aurions pas écrite. 

 

Exemples : 

• Reconnaitre un visage sur une photo 

• Prédire le cours de la Bourse 

• Eliminer le cancer 

• Composer de la musique 

• Conduire une voiture 

 

Doit-on donc perdre tout espoir de voir un jour un ordinateur nous aider 

dans la lutte contre le cancer ?  

Bien sûr que non ! Le Machine Learning a justement été inventé pour 

venir débloquer la situation 2 (quand on ne connait pas le calcul) en 

utilisant une technique audacieuse, que je vais vous dévoiler tout de 

suite. 
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Laisser la Machine apprendre à partir 

d’expériences 

Le Machine Learning consiste à laisser l’ordinateur apprendre quel calcul 

effectuer, plutôt que de lui donner ce calcul (c’est-à-dire le programmer 

de façon explicite). 

 

C’est en tout cas la définition du Machine Learning selon son inventeur 

Arthur Samuel, un mathématicien américain qui a développé un 

programme pouvant apprendre tout seul comment jouer aux Dames en 

1959. 

 

“Machine Learning is the science of 
getting computers to learn without 
being explicitly programmed.”
Arthur Samuel, 1959.

 

Un autre américain du nom de Tom Mitchell donna en 1998 une définition 

un peu plus moderne du Machine Learning en énonçant qu’une machine 

apprend quand sa performance à faire une certaine tâche s’améliore avec 

de nouvelles expériences. 

Mais comment apprendre ? 

Pour donner à un ordinateur la capacité d’apprendre, on utilise des 

méthodes d’apprentissage qui sont fortement inspirées de la façon 

dont nous, les êtres humains, apprenons à faire des choses. Parmi ces 

méthodes, on compte : 

• L’apprentissage supervisé (Supervised Learning) 

• L’apprentissage non supervisé (Unsupervised Learning) 

• L’apprentissage par renforcement (Reinforcement 

Learning) 

 

Voyons dès à présent ce qu’est l’apprentissage supervisé, qui est la 

méthode la plus utilisée en Machine Learning.  
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L’Apprentissage Supervisé 

Imaginez que vous commenciez à apprendre le chinois. 

Pour ce faire, il vous faudra soit acheter un livre de traduction chinois-

français, ou bien trouver un professeur de chinois. 

CHIEN

 

Le rôle du professeur ou du livre de traduction sera de superviser votre 

apprentissage en vous fournissant des exemples de traductions français-

chinois que vous devrez mémoriser. 

On parle ainsi d’apprentissage supervisé lorsque l’on fournit à une 

machine beaucoup d’exemples qu’elle doit étudier. 

Pour maîtriser l’apprentissage supervisé, il faut absolument comprendre 

et connaitre les 4 notions suivantes : 

• Le Dataset 

• Le Modèle et ses paramètres 

• La Fonction Coût 

• L’Algorithme d’apprentissage 

 

Notion 1 : Apprendre à partir d’exemples (Dataset) 

Comme pour apprendre la langue chinoise, on parle d’apprentissage 

supervisé lorsque l’on fournit à une machine beaucoup d’exemples (𝒙, 𝒚) 

dans le but de lui faire apprendre la relation qui relie 𝒙 à 𝒚. 

CHIEN

YX
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En Machine Learning, on compile ces exemples (𝒙, 𝒚) dans un tableau 

que l’on appelle Dataset : 

• La variable 𝒚 porte le nom de target (la cible). C’est la 

valeur que l’on cherche à prédire. 

 

• La variable 𝒙 porte le nom de feature (facteur). Un facteur 

influence la valeur de 𝒚, et on a en général beaucoup de 

features (𝒙𝟏, 𝒙𝟐, … ) dans notre Dataset que l’on regroupe 

dans une matrice 𝑿. 

 

Ci-dessous, un Dataset qui regroupe des exemples d’appartements avec 

leur prix 𝒚 ainsi que certaines de leurs caractéristiques (features). 

 

Ce Dataset, 99.9% des gens se contentent de l’analyser dans Excel. La 

bonne nouvelle, c’est que vous ferez bientôt partie des 0.1% de gens qui 

peuvent faire du Machine Learning avec ça ! 
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Notion 2 : Développer un modèle à partir du Dataset 

En Machine Learning, on développe un modèle à partir de ce Dataset. Il 

peut s’agir d’un modèle linéaire comme vous pouvez le voir à gauche, ou 

bien un modèle non-linéaire comme vous pouvez le voir à droite. Nous 

verrons dans ce livre comment choisir un modèle plutôt qu’un autre. 

 

On définit 𝒂, 𝒃, 𝒄, etc. comme étant les paramètres d’un modèle. 

 

Notion 3 : Les erreurs de notre modèle - la Fonction 

Coût 

Autre chose à noter est qu’un modèle nous retourne des erreurs par 

rapport à notre Dataset. On appelle Fonction Coût l’ensemble de ces 

erreurs (le plus souvent on prend la moyenne quadratique des erreurs 

comme dans le chapitre 2). 
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Allons droit au but : Avoir un bon modèle, c’est avoir un modèle qui nous 

donne de petites erreurs, donc une petite Fonction Coût. 

 

 

Notion 4 : Apprendre, c’est minimiser la Fonction Coût 

Ainsi l’objectif central en Supervised Learning, c’est de trouver les 

paramètres du modèle qui minimisent la Fonction Coût. Pour cela, on 

utilise un algorithme d’apprentissage, l’exemple le plus courant étant 

l’algorithme de Gradient Descent, que vous apprendrez dans le chapitre 

2. 

 

Les applications du Supervised Learning 

Avec le Supervised Learning on peut développer des modèles pour 

résoudre 2 types de problèmes : 

• Les problèmes de Régression 

• Les problèmes de Classification 

 

Dans les problèmes de régression, on cherche à prédire la valeur d’une 

variable continue, c’est-à-dire une variable qui peut prendre une infinité 

de valeurs. Par exemple : 

• Prédire le prix d’un appartement (𝑦) selon sa surface 

habitable (𝑥) 
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• Prédire la quantité d’essence consommée (𝑦) selon la 

distance parcourue (𝑥) 

 

Dans un problème de classification, on cherche à classer un objet dans 

différentes classes, c’est-à-dire que l’on cherche à prédire la valeur d’une 

variable discrète (qui ne prend qu’un nombre fini de valeurs). Par 

exemple : 

• Prédire si un email est un spam (𝑐𝑙𝑎𝑠𝑠𝑒 𝑦 =  1) ou non 

(𝑐𝑙𝑎𝑠𝑠𝑒 𝑦 =  0) selon le nombre de liens présent dans l’email 

(𝑥) 

• Prédire si une tumeur est maligne (𝑦 = 1) ou bénigne (𝑦 =

0) selon la taille de la tumeur (𝒙𝟏) et l’âge du patient (𝒙𝟐) 

Dans le cas d’un problème de classification, on représente souvent les 

classes par des symboles, plutôt que par leur valeur numérique (0, 1, …) 

Régression Classification

 

Mais tout ça, on peut le faire dans Excel ? 

A ce stade, vous pourriez penser que calculer le prix d’un appartement 

selon sa surface habitable, tout le monde peut le faire dans Excel (Il 

existe même la fonction Régression dans Excel). 

La force du Machine Learning, c’est qu’il est très facile de développer des 

modèles très complexes qui peuvent analyser des milliers de features (𝑥) 

qu’un être humain ne serait pas capable de prendre en compte pour 

faire son calcul (et Excel non plus). 
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Par exemple, pour prédire le prix d’un appartement (𝑦), un modèle de 

Machine Learning peut prendre en compte : 

• sa surface (𝒙𝟏) 

• sa localisation (𝒙𝟐) 

• sa qualité (𝒙𝟑) 

• sa proximité avec un parc (𝒙𝟒) 

• etc. 

De même, pour prédire si un email est un spam (𝑦), le Machine Learning 

peut analyser : 

• le nombre de liens (𝒙𝟏) 

• le nombre de fautes d’orthographe (𝒙𝟐) 

• etc. 

Plus il y a de features disponibles, plus il existe d’informations pour que le 

modèle prenne des décisions ‘intelligentes’, c’est l’intelligence artificielle. 

Autres méthodes d’apprentissage 

Vous connaissez désormais l’apprentissage supervisé, qui s’inspire de la 

façon dont nous, les êtres humains, pourrions apprendre une langue 

comme le chinois en étudiant à l’aide d’un bouquin les associations 

français → chinois (𝑥 → 𝑦). 

Pourtant, si vous vous perdez, seul, en Chine, sans bouquin, sans 

traducteur, il existe tout de même une méthode pour apprendre le 

chinois. C’est l’apprentissage non-supervisé, et je vous dévoilerai 

comment réussir cet exploit dans le chapitre 6. 

 

Finalement, une 3ième méthode d’apprentissage assez populaire en 

robotique est l’apprentissage par renforcement. 

Cette dernière méthode s’inspire de la façon dont nous éduquons nos 

animaux de compagnie, en leur offrant une friandise quand ils font une 

bonne action. Cette méthode étant mathématiquement plus avancée que 

les deux premières, je n’en parlerai pas dans ce livre, mais je vous invite 

à lire mon site si vous souhaitez en savoir plus ! 
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Les 4 notions clefs du Machine Learning que vous 

devez absolument retenir 

Le Machine Learning est un domaine vaste et complexe, et de mon 

expérience les gens perdent parfois de vue l’essentiel, même en suivant 

des formations payantes. 

Pour sortir du lot, il faut avoir les idées claires sur les bases du Machine 

Learning. Vous devez ainsi retenir 4 notions essentielles, et vous verrez 

qu’elles vous suivront dans tous vos projets de Machine Learning. 

1. Le Dataset 

En Machine Learning, tout démarre d’un Dataset qui contient nos 

données. Dans l’apprentissage supervisé, le Dataset contient les 

questions (𝑥) et les réponses (𝑦) au problème que la machine doit 

résoudre. 

2. Le modèle et ses paramètres 

A partir de ce Dataset, on crée un modèle, qui n’est autre qu’une 

fonction mathématique. Les coefficients de cette fonction sont les 

paramètres du modèle. 

3. La Fonction Coût 

Lorsqu’on teste notre modèle sur le Dataset, celui-ci nous donne des 

erreurs. L’ensemble de ces erreurs, c’est ce qu’on appelle la Fonction 

Coût. 

4. L’Algorithme d’apprentissage 

L’idée centrale du Machine Learning, c’est de laisser la machine trouver 

quels sont les paramètres de notre modèle qui minimisent la Fonction 

Coût. 
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Chapitre 2 : La 
Régression Linéaire 

 

 

 

 

 

 

 

 

Il est temps de mettre en pratique les concepts que vous avez appris. A 

travers l’exemple de la Régression Linéaire, vous allez mieux 

comprendre les notions de : 

• Dataset 

• Modèle 

• Fonction Coût 

• Gradient Descent 
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Petit rappel : Apprentissage Supervisé et 

problème de Régression 

Si vous cherchez à prédire le cours de la bourse, le prix d’un 

appartement, ou bien l’évolution de la température sur Terre, alors vous 

cherchez en fait à résoudre un problème de régression. 

Si vous disposez d’un Dataset (𝑥, 𝑦) alors vous pouvez utiliser 

l’apprentissage supervisé pour développer un modèle de régression. 

Dans ce chapitre je vais vous montrer comment développer votre premier 

modèle de Machine Learning ! 

 

Apprenez votre premier modèle linéaire 

Voici la recette à suivre pour réaliser votre premier modèle de Machine 

Learning. 

1. Récolter vos données 

Imaginez que plusieurs agences immobilières vous aient fourni des 

données sur des appartements à vendre, notamment le prix de 

l’appartement (𝒚) et la surface habitable (𝒙). En Machine Learning, on dit 

que vous disposez de 𝒎 exemples d’appartements. 

On désigne : 

𝒙(𝒊) la surface habitable de l’exemple 𝒊  

𝒚(𝒊) le prix de l’exemple 𝒊  

En visualisant votre Dataset, vous obtenez le nuage de points suivant : 
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2. Créer un modèle linéaire  

A partir de ces données, on développe un modèle linéaire 𝒇(𝒙) = 𝒂𝒙 + 𝒃 

où 𝒂 et 𝒃 sont les paramètres du modèle.  

Un bon modèle donne de petites erreurs entre ses prédictions 𝒇(𝒙) et les 

exemples (𝒚) du Dataset. 

Nous ne connaissons pas les valeurs des paramètres 𝒂 et 𝒃, ce sera le 

rôle de la machine de les trouver, de sorte à tracer un modèle qui s’insère 

bien dans notre nuage de point comme ci-dessous : 

 

3. Définir La Fonction Coût 

Pour la régression linéaire, on utilise la norme euclidienne pour mesurer 

les erreurs entre 𝒇(𝒙) et (𝒚). 

Concrètement, voici la formule pour exprimer l’erreur 𝑖 entre le prix 𝒚(𝒊) 
et la prédiction faites en utilisant la surface 𝒙(𝒊) : 

𝑒𝑟𝑟𝑒𝑢𝑟(𝑖) =  ( 𝑓(𝑥(𝑖))  −  𝑦(𝑖) )2 
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Par exemple, imaginez que le 10ième exemple de votre Dataset soit un 

appartement de 𝑥(10) =  80 𝑚2 dont le prix s’élève à 𝑦(10) = 100,000 € et 

que votre modèle prédise un prix de 𝑓(𝑥(10))100,002 €. L’erreur pour 

cette exemple est donc : 

𝑒𝑟𝑟𝑒𝑢𝑟(10) =  ( 𝑓(𝑥(10))  −  𝑦(10) )
2
 

𝑒𝑟𝑟𝑒𝑢𝑟(10) =  ( 100,002 − 100,000 )2 

𝑒𝑟𝑟𝑒𝑢𝑟(10) =  ( 2)2 

𝑒𝑟𝑟𝑒𝑢𝑟(10) =  4 

Chaque prédiction s’accompagne d’une erreur, on a donc 𝒎 erreurs. 

On définit la Fonction Coût 𝑱(𝒂, 𝒃) comme étant la moyenne de toutes 

les erreurs : 

𝐽(𝑎, 𝑏) =  
1

2𝑚
∑ 𝑒𝑟𝑟𝑒𝑢𝑟𝑖

𝑚

𝑖=1

 

𝑱(𝒂, 𝒃) =  
𝟏

𝟐𝒎
∑( 𝒇 (𝒙(𝒊))  − 𝒚(𝒊) )

𝟐
𝒎

𝒊=𝟏

 

Note : En français, cette fonction a un nom : c’est l’erreur quadratique 

moyenne (Mean Squared Error) 
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4. Trouver les paramètres qui minimisent la Fonction 

Coût 

La prochaine étape est l’étape la plus excitante, il s’agit de laisser la 

machine apprendre quels sont les paramètres qui minimisent la Fonction 

Coût, c’est-à-dire les paramètres qui nous donnent le meilleur modèle. 

 

Pour trouver le minimum, on utilise un algorithme d’optimisation qui 

s’appelle Gradient Descent (la descente de gradient). 

 

Comprendre le Gradient Descent (la descente de gradient) 

Imaginez-vous perdu en montagne. Votre but est de rejoindre le refuge 

qui se trouve au point le plus bas de la vallée. Vous n’avez pas pris de 

carte avec vous donc vous ne connaissez pas les coordonnées de ce 

refuge, vous devez le trouver tout seul. 

 

 

Pour vous en sortir, voici une stratégie à adopter : 

1. Depuis votre position actuelle, vous partez en direction de là où la 

pente descend le plus fort. 

2. Vous avancez une certaine distance en suivant cette direction 

coûte que coûte (même si ça implique de remonter une pente) 

3. Une fois cette distance parcourue, vous répétez les 2 premières 

opérations en boucle, jusqu’à atteindre le point le plus bas de la 

vallée. 
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Etape 1: Trouver la pente la 
plus forte

Etape 2: Marcher une certaine 
distance dans cette direction

Etape 3: Répéter les étapes 1 
et 2 en boucle  

Les étapes 1, 2 et 3 forment ce qu’on appelle l’algorithme de Gradient 

Descent. 

Cet algorithme vous permet de trouver le minimum de la Fonction Coût 

𝑱(𝒂, 𝒃) (le point le plus bas de la montagne) en partant de coordonnées 𝒂 

et 𝒃 aléatoires (votre position initiale dans la montagne) : 

1. Calculer la pente de la Fonction Coût, c’est-à-dire la dérivée de 

𝑱(𝒂, 𝒃). 

2. Evoluer d’une certaine distance ∝ dans la direction de la pente la 

plus forte. Cela a pour résultat de modifier les paramètres 𝒂 et 𝒃 

3. Recommencer les étapes 1 et 2 jusqu’à atteindre le minimum de 

𝑱(𝒂, 𝒃). 

Pour illustrer l’algorithme, voyez le dessin ci-dessous, où je montre la 

recherche du paramètre 𝒂 idéal (la même chose s’applique au paramètre 

𝒃) 
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Revenons à nos moutons : Comment utiliser l’algorithme de 

Gradient Descent 

Pour rappel, nous avons jusqu’à présent créé un Dataset, développé un 

modèle aux paramètres inconnus, et exprimé la Fonction Coût 𝑱(𝒂, 𝒃) 

associée à ce modèle. 

Notre objectif final : Trouver les paramètres 𝒂 et 𝒃 qui minimisent 𝑱(𝒂, 𝒃). 

Pour cela, nous allons choisir 𝒂 et 𝒃 au hasard (nous allons nous perdre 

en montagne) puis allons utiliser en boucle la descente de gradient pour 

mettre à jour nos paramètres dans la direction de la Fonction Coût la plus 

faible. 

𝑅é𝑝𝑒𝑡𝑒𝑟 𝑒𝑛 𝑏𝑜𝑢𝑐𝑙𝑒: 

𝒂 = 𝒂 − ∝  
𝝏 𝑱(𝒂, 𝒃)

𝝏 𝒂
 

𝒃 = 𝒃 − ∝  
𝝏 𝑱(𝒂, 𝒃)

𝝏 𝒃
 

 

Je vous explique : à chaque itération de cette boucle, les paramètres 𝒂 et 

𝒃 sont mis à jour en soustrayant leur propre valeur à la valeur de la 

pente 
𝝏 𝑱(𝒂,𝒃)

𝝏…
 multipliée par la distance à parcourir ∝. On appelle ∝ la 

vitesse d’apprentissage (Learning rate). 

Si la vitesse est trop lente, le modèle peut mettre longtemps à être 

entraîné, mais si la vitesse est trop grande, alors la distance parcourue 

est trop longue et le modèle peut ne jamais converger. Il est important de 

trouver un juste milieu. Le dessin ci-dessous illustre mes propos.
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Une fois cet algorithme programmé, vous allez vivre le moment le plus 

excitant de votre vie de Data Scientist : voir votre première intelligence 

artificielle apprendre à prédire le prix d’un appartement selon sa 

surface habitable. Vous verrez comme ci-dessous que votre algorithme 

arrive à minimiser la Fonction Coût avec le nombre d’itérations.  

 

 

A partir de là, c’est la porte ouverte aux algorithmes qui automatisent les 

transactions immobilières, et le même concept que celui que vous venez 

d’apprendre sera appliqué pour apprendre à une machine comment 

reconnaitre un visage sur une photo, comment prédire le cours de la 

bourse, etc. 

Mais avant de voir la magie s’opérer, il faut avoir préalablement calculer 

les dérivées partielles de la Fonction Coût. 

 

Calcul des dérivées partielles 

Pour implémenter l’algorithme de Gradient Descent, il faut donc calculer 

les dérivées partielles de la Fonction Coût. Rappelez-vous qu’en 

mathématique, la dérivée d’une fonction en un point nous donne la valeur 

de sa pente en ce point. 

 

Fonction Coût :  

𝑱(𝒂, 𝒃) =  
𝟏

𝟐𝒎
∑(  𝒂𝒙(𝒊) + 𝒃  −  𝒚(𝒊) )𝟐

𝒎

𝒊=𝟏
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Dérivée selon le paramètre 𝒂  : 

𝝏 𝑱(𝒂, 𝒃)

𝝏 𝒂
=  

𝟏

𝒎
∑( 𝒂𝒙(𝒊) + 𝒃 −  𝒚(𝒊) )

𝒎

𝒊=𝟏

 × 𝒙(𝒊) 

 

Dérivée selon le paramètre 𝒃  : 

𝝏 𝑱(𝒂, 𝒃)

𝝏 𝒃
=  

𝟏

𝒎
∑( 𝒂𝒙(𝒊) + 𝒃 −  𝒚(𝒊) )

𝒎

𝒊=𝟏

 

Note : 

Surtout ne soyez pas impressionnés par ces formules mathématiques ! Il 

s’agit simplement de la dérivée d’une fonction composée : 

(𝑔 ∘ 𝑓)′ = 𝑓′ × 𝑔′ ∘ 𝑓 

Avec : 𝒇 = 𝒂𝒙 + 𝒃 − 𝒚 et 𝒈 = (𝒇)𝟐 

En dérivant, le carré tombe et se simplifie avec la fraction 
1

2𝑚
 pour devenir 

1

𝑚
 et 𝒙(𝒊) apparait en facteur pour la dérivée par rapport à 𝑎. 

 

 

Utilisation des matrices et des vecteurs 

Dans la pratique, on exprime notre Dataset et nos paramètres sous forme 

matricielle, ce qui simplifie beaucoup les calculs. On créer ainsi un 

vecteur 𝜽 =  (𝒂
𝒃
) ∈  ℝ 𝒏+𝟏 qui contient tous les paramètres pour notre 

modèle, un vecteur 𝒚 ∈  ℝ𝒎×𝟏 et une matrice 𝑋 ∈  ℝ𝒎×𝒏 qui inclut toutes 

les features 𝒏. Dans la régression linéaire, 𝒏 = 𝟏. 

Au cas où vous seriez rouillé en algèbre : une matrice ℝ𝒎×𝒏, c’est comme 

un tableau avec 𝑚 𝑙𝑖𝑔𝑛𝑒𝑠 𝑒𝑡 𝑛 𝑐𝑜𝑙𝑜𝑛𝑛𝑒𝑠. 
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Résumé des étapes pour développer un 

programme de Régression Linéaire 

La recette de la régression linéaire : 

1. Récolter des données (𝑿, 𝒚) 𝑎𝑣𝑒𝑐 𝑿, 𝒚 ∈  ℝ𝒎×𝟏 

2. Donner à la machine un modèle linéaire 𝑭(𝑿) = 𝑿. 𝜽 𝒐ù 𝜽 = (𝒂
𝒃
) 

3. Créer la Fonction Coût 𝑱(𝜽) =  
𝟏

𝟐𝒎
 ∑(𝑭(𝑿) − 𝒚 )𝟐 

4. Calculer le gradient et utiliser l’algorithme de Gradient Descent 

𝑅é𝑝𝑒𝑡𝑒𝑟 𝑒𝑛 𝑏𝑜𝑢𝑐𝑙𝑒: 

 𝜽 =  𝜽 −  𝜶 ×
𝝏 𝑱(𝜽)

𝝏 𝜽
 

𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕: 
𝜕 𝐽(𝜃)

𝜕 𝜃
=  

1

𝑚
 𝑋𝑇 . ( 𝐹(𝑋) − 𝑌) 

 

Le 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝛼 prend le nom d’hyper-paramètre de par son influence 

sur la performance finale du modèle (s’il est trop grand où trop petit, la 

fonction le Gradient Descent ne converge pas). 

Dans le prochain chapitre, vous allez apprendre à programmer votre 

premier algorithme de Machine Learning en utilisant Python.  
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Chapitre 3 : Adieu 
Excel, bonjour Python. 

Vous voilà Data 
Scientist ! 

 

 

 

 

 

Fini la théorie, il est temps de passer à l’action ! 

Dans ce chapitre, vous allez apprendre à écrire de vrais programmes de 

Machine Learning en utilisant Python et le module Sklearn.  

Spécifiquement pour ce chapitre, vous allez écrire un programme de 

Régression Linéaire à plusieurs variables et vous apprendrez 

comment facilement modifier votre code pour faire des Régressions 

polynômiales.   
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Installer Python Anaconda : le meilleur outil de 

Machine Learning 

Il existe deux façons d’installer les outils de Machine Learning sur votre 

ordinateur : La bonne et la mauvaise. 

 

En installant Anaconda, vous vous épargnez des heures de souffrance à 

taper des commandes en mode ‘geek’ à installer les packages, librairies et 

éditeur de texte indispensables pour faire du Machine Learning. 

Pourquoi faire simple quand on peut faire compliqué ? 

a

a b

b

Autres méthodes

 

 

Anaconda contient tous les outils et librairies dont vous avez besoin pour 

faire du Machine Learning : Numpy, Matplotlib, Sklearn, etc. 

Commencez par télécharger puis installer Anaconda depuis le site officiel : 

https://www.anaconda.com/distribution/#download-section 

Note: Téléchargez toujours la version la plus récente de Python (ici 

Python 3.7) 

 

https://www.anaconda.com/distribution/#download-section
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Pour plus d’information, je vous montre ici en vidéo comment vous y 

prendre pour installer Anaconda et comment vous en servir. 

 

Une fois Anaconda installé, vous pouvez lancer l’application Jupyter 

Notebook depuis votre barre de recherche Windows/Mac/Linux. 

 

 

Utilisation de Jupyter Notebook pour vos projets 

Jupyter Notebook est une application Web qui permet de créer et de 

partager des codes Python.  

 

Note : C’est une application Web, mais il n’est pas nécessaire d’avoir une 

connexion Internet pour vous servir de Jupyter. Aussi, vos données/codes 

ne sont à aucun moment stockés sur Internet (ce n’est pas du Cloud). 

 

Lorsque vous démarrez Jupyter, il est possible que 2 fenêtres s’ouvrent, 

auquel cas ne vous occupez pas de la fenêtre noire (la console) et surtout 

ne la fermez pas (ceci déconnecterait Jupyter de votre disque dur). 

Ne vous occupez pas 
de cette fenêtre. Ne la 

fermez surtout pas!

Fenêtre D’acceuil de Jupyter. Vous y 
trouvez les fichiers stockés sur votre 

disque dur. 

Cliquez sur ‘New’ 
pour écrire un 

nouveau programme

 

https://youtu.be/jaw5FhWx2Bk
http://localhost:8888/tree?token=78f410654d7d3a0277cb593c455e2b1e907d1637afe82762
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La fenêtre principale de Jupyter n’est ni plus ni moins qu’un explorateur 

de fichier relié à votre disque dur, vous pouvez ouvrir tous vos fichiers, 

Dataset, codes, etc. depuis cette fenêtre. 

Cliquez sur le bouton ‘New’ situé en haut à droite de cette fenêtre pour 

commencer à écrire un nouveau programme (puis cliquez sur Python 3). 

La fenêtre suivante s’affiche alors : Vous êtes prêts à coder ! 

 

Apprenez la programmation en 15 minutes 

Il est possible que certains d’entre vous n’aient jamais écrit de 

programme de leur vie, alors je vais vous expliquer à ma façon comment 

comprendre le monde de la programmation en moins de 15 minutes. 

La programmation : une nouvelle vision du monde 

En programmation, on choisit d’adopter une certaine vision du monde 

dans lequel nous vivons. On peut considérer que le monde peut être 

modélisé à partir de 2 concepts : 

• Des objets 

• Des actions, qui modifient l’état des objets. 

 

Regardez autour de vous. Vous êtes entourés d’objets. En réalisant une 

action, des objets peuvent apparaitre, disparaitre, se combiner, se 

transformer, etc. 

 

D’ailleurs, quand nous nous exprimons, il est nécessaire et suffisant de 

dire un nom (objet) et un verbe (action) pour faire une phrase. 

« Le chien boit. » ou bien « Le chien boit de l’eau. » 

Chien : Objet 

Boit : Action 

Eau : Objet, qui diminue avec l’action boire. 
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En programmation, ces deux notions prennent le nom de variable et de 

fonction, les fonctions transformant la valeur des variables. 

Function
Input

Variable
Output

Variable

Mélanger
Eau chaude

Café

A x B
A = 2

C = 6

Café soluble

B = 3

 

Le plus souvent, il n’est pas nécessaire de développer ses propres 

fonctions car celles-ci sont déjà développées dans des librairies open 

source. 

Par exemple, la librairie Sklearn contient toutes les fonctions 

mathématiques et l’algorithme de Gradient Descent que nous avons 

appris dans le Chapitre 2 ! En pratique, il est donc inutile d’écrire la 

moindre équation mathématique. Génial, non ?! 

 

Au fil des exemples dans ce livre, vous allez naturellement apprendre 

comment programmer en Python spécialement pour le Machine Learning. 

Mon but est de vous épargner une avalanche de détails inutiles que vous 

pourriez trouver dans une formation classique, pour vous montrer les 

fonctions essentielles et utiles qui vous aideront réellement à résoudre 

des problèmes dans votre travail après la lecture de ce livre. 

Si toute fois vous désirez apprendre Python plus en profondeur, Internet 

regorge de formations gratuites et… ah oui j’oubliais : il y a ma chaine 

YouTube aussi ! ☺ 

 

https://www.youtube.com/channel/UCmpptkXu8iIFe6kfDK5o7VQ
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Les bases de Python 

1. Les commentaires 

Dans tout langage de programmation, il est possible d’écrire des 

commentaires. Un commentaire n’est pas lu par la machine et vous 

pouvez donc y écrire ce que vous voulez pour documenter votre code. 

Dans Python, il suffit de précéder votre code du symbole « # » pour le 

transformer en commentaire. 

# ceci est un commentaire 

 

 

2. Les variables 

Pour définir une variable dans Jupyter, il suffit de lui donner un nom et de 

lui assigner une valeur. Par exemple, vous pouvez choisir de créer la 

variable « vitesse » et de lui assigner la valeur 90. 

Note : les accents et chiffres sont à bannir pour le nom d’une variable ! 

Vous pouvez effectuer des opérations mathématiques entre les variables 

numériques. 

Une fois le code écrit, appuyez sur CTRL + Entrée pour exécuter votre 

code. Le résultat est affiché et une nouvelle cellule s’ouvre en bas pour 

continuer à écrire du code. 

 

Il existe de nombreux types de variables : les variables numériques, les 

listes, les matrices, les chaines de caractères… 
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3. Les fonctions 

Comme énoncé plus haut, Python contient déjà de nombreuses librairies 

remplies de fonctions très utiles et il n’est pas nécessaire de coder ses 

propres fonctions pour faire du Machine Learning. 

Cependant, je vais tout de même vous montrer la structure d’une fonction 

dans Python, pour votre connaissance personnelle. Vous êtes libres de 

passer directement à la page suivante si l’envie vous prend. 

 

Rappelez-vous qu’une fonction transforme le plus souvent une entrée en 

sortie : 

Function
Input

Variable
Output

Variable

 

Pour créer une fonction dans Python, il faut commencer par écrire 

« def » en début de ligne, puis donner un nom à la fonction, écrire les 

inputs entre parenthèse, et finir la ligne par un « : ». 

Les lignes suivantes font partie de la fonction, vous pouvez y écrire des 

commentaires, créer de nouvelles variables, faire des opérations 

mathématiques etc. 

La fonction s’arrête à la ligne « return » qui indique quelle sortie la 

fonction doit produire. 

Une fois la fonction créée, il est possible de l’utiliser à l’infini ! 

Exemple : 

 

Voyons maintenant les principales librairies qui contiendront les fonctions 

à connaitre pour faire du Machine Learning comme un pro ! 
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4. Les 4 librairies à maîtriser pour le Machine Learning 

Pour importer une librairie dans Python, rien de plus simple. Il suffit 

d’écrire le nom de la librairie précédé de « import » en tête de votre 

programme. Il est également possible d’importer certaines fonctions de la 

librairie en écrivant from « librairie » import « truc ». 

Exemple : 

 

 

 

Numpy est la librairie qui permet de créer et manipuler des matrices 

simplement et avec efficacité. 

En Machine Learning, on insère le plus souvent notre Dataset dans des 

matrices. Ainsi le calcul matriciel représente l’essentiel du Machine 

Learning. Il est important de le comprendre, mais les fonctions présentes 

dans Numpy font les calculs matriciels à notre place… Magique ! 

 

 

 

Matplotlib est la librairie qui permet de visualiser nos Datasets, nos 

fonctions, nos résultats sous forme de graphes, courbes et nuages de 

points. 
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Sklearn est la librairie qui contient toutes les fonctions de l’état de l’art 

du Machine Learning. On y trouve les algorithmes les plus 

importants ainsi que diverses fonctions de pre-processing. 

 

 

Pandas est une excellente librairie pour importer vos tableaux Excel (et 

autres formats) dans Python dans le but de tirer des statistiques et de 

charger votre Dataset dans Sklearn. 

 

5. Et tout ce dont je n’ai pas parlé 

Dans cette introduction à Python, je n’ai pas parlé des boucles for et 

while. Je n’ai pas parlé des conditions if elif else et j’ai omis d’introduire 

d’autres commandes de bases comme « print(‘hello world’) ». 

Ces codes sont bien évidemment importants, mais ils ne sont pas 

essentiels à la compréhension et à l’apprentissage du Machine Learning 

pour ce livre. 

Je vous invite à consulter ma chaine YouTube si vous désirez compléter 

vos bases en Python. ☺ 

 

  

https://www.youtube.com/channel/UCmpptkXu8iIFe6kfDK5o7VQ
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Développer enfin votre premier programme de 

Machine Learning 

Fini de rigoler, il est temps de passer à l’action ! Vous allez maintenant 

développer un programme de régression linéaire en suivant la méthode 

apprise dans le chapitre 2. 

Les étapes pour programmer une Régression Linéaire 

Etape 1 : Importer les librairies 

Commençons par ouvrir un nouveau Notebook dans Jupyter comme nous 

l’avons appris précédemment. Ensuite, il faut importer les librairies et 

fonctions suivantes : 

• Numpy pour manipuler notre Dataset en tant que matrice 

• Matplotlib.pyplot pour visualiser nos données 

• La fonction make_regression de Sklearn pour générer 

un nuage de point (ici on va simuler des données) 

• SGDRegressor (qui signifie Stochastic Gradient Descent 

Regressor) et qui contient le calcul de la Fonction Coût, 

des gradients, de l’algorithme de minimisation, bref… 

tout ce qui pouvait sembler compliqué dans le chapitre 2. 

 

import numpy as np   

import matplotlib.pyplot as plt   

from sklearn.datasets import make_regression   

from sklearn.linear_model import SGDRegressor   

 

N’oubliez pas de taper CTRL + Entrée pour exécuter votre code. S’il y a 

une erreur, réviser vos compétences du copier/coller… ☺ 
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Etape 2 : Créer un Dataset 

Pour ce premier code, nous n’allons pas importer de données 

personnelles. Plutôt, nous allons générer un tableau de données (𝒙, 𝒚) 

aléatoires. 

Pour cela, la fonction make_regression est très utile. La fonction prend 

comme arguments (c’est le mot pour désigner inputs) le nombre 

d’échantillons à générer, le nombre de variables et le bruit puis nous 

retourne deux vecteurs 𝒙 et 𝒚. 

Pour maitriser l’aléatoire, on écrit la ligne np.random.seed(0). 

Finalement, pour visualiser nos données on utilise la fonction 
plt.scatter(x, y). 

  

np.random.seed(0)   

x, y = make_regression(n_samples=100, n_features=1, noise=10)   

plt.scatter(x, y)   

 

Voici le résultat que vous devriez obtenir : 

 

 

Etape 3 : Développer le modèle et l’entraîner 

Pour développer et entraîner un modèle, il a fallu beaucoup de maths 

dans le chapitre 2 : Entre la Fonction Coût, les dérivées, l’algorithme de 

Gradient Descent… 

Dans Sklearn, tout cela est déjà fait pour vous ! 
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Il vous suffit de définir une variable model depuis le générateur 

SGDRegressor en entrant le nombre d’itérations que le Gradient Descent 

doit effectuer ainsi que le Learning Rate. 

Une fois le modèle défini, il vous faut l’entraîner. Pour cela, il suffit 

d’utiliser la fonction fit.  

 

Par exemple, entraînons notre modèle sur 100 itérations avec un 

Learning rate de 0.0001 : 

model = SGDRegressor(max_iter=100, eta0=0.0001)   

model.fit(x,y)   

 

Nous pouvons maintenant observez la précision de notre modèle en 

utilisant la fonction score qui calcule le coefficient de détermination 

entre le modèle et les valeurs 𝒚 de notre Dataset.  

On peut aussi utiliser notre modèle pour faire de nouvelles prédictions 

avec la fonction predict et tracer ces résultats avec la fonction 

plt.plot : 

 

print('Coeff R2 =', model.score(x, y))   

plt.scatter(x, y)   

plt.plot(x, model.predict(x), c='red', lw = 3)  
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Wow ! Notre modèle semble vraiment mauvais. C’est parce que nous ne 

l’avons pas entraîné suffisamment longtemps et parce que le Learning 

rate était trop faible. Aucun problème, il est possible de le ré-entraîner 

avec de meilleurs hyper-paramètres. 

En Machine Learning, les valeurs qui fonctionnent bien pour la plupart 

des entraînements sont : 

• Nombre d’itérations = 1000 

• Learning rate = 0.001 

 

 

Fantastico ! Vous avez entraîné votre premier modèle de Machine 

Learning, et il fonctionne vraiment bien avec un coefficient 𝑅2 = 94%. Vous 

pourriez maintenant vous en servir pour faire de bonnes prédictions ! Par 

exemple pour prédire le prix d’un appartement selon sa surface habitable, 

ou bien pour prédire l’évolution de la température sur Terre.  

Mais peut-être n’êtes-vous pas très satisfait… On peut aussi faire ce genre 

de chose dans Excel, pourquoi se compliquer la vie ? 
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Certes, mais les choses vont commencer à devenir plus excitantes dans les 

prochaines pages quand nous allons développer des modèles à partir de 

centaines de variables (ici nous n’en avions qu’une : 𝒙)  

Mais auparavant, je vais vous montrer comment votre machine a appris 

les paramètres du modèle avec le Gradient Descent. Pour cela, il existe ce 

qu’on appelle les courbes d’apprentissage. 

 

Les courbes d’apprentissage 

En Machine Learning, on appelle courbe d’apprentissage (Learning 

curves) les courbes qui montrent l’évolution de la Fonction Coût au fil 

des itérations de Gradient Descent. Si votre modèle apprend, alors sa 

Fonction Coût doit diminuer avec le temps, comme ci-dessous : 

 

A chaque itération, le modèle s’améliore pour donner la droite ci-dessous. 
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Si vous souhaitez reproduire ces courbes, je vous ai mis à la fin de ce 

livre le code que vous pourrez copier/coller (en bonus je vous donne la 

version longue du code de Gradient Descent telle que nous l’avons vu 

dans le chapitre 2). 

 

Régression Polynômiale à plusieurs variables 

Si vous achetez un stylo à 1€, combien vous coûteront 100 stylos ? 

100 € ? Faux ! 

Nous vivons dans un monde régit par des lois souvent non-linéaires et 

où une infinité de facteurs peuvent influencer nos résultats. 

Par exemple, si vous achetez 100 stylos, vous aurez peut-être une 

réduction à 90 €. Si en revanche il y a une pénurie de stylos, ce même 

stylo qui coûtait 1 € pourrait valoir 1.50 € 

C’est là qu’Excel ne pourra plus rien pour vous et que le Machine Learning 

trouve son utilité dans le monde réel. 

 

Problème non-linéaire : Un problème plus compliqué ? 

Pour le nuage de point ci-dessous, il semblerait judicieux de développer 

un modèle polynômial de degré 2. 

𝒇(𝒙) =  𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 

 

Ce modèle, plus complexe que le modèle linéaire précédent, va 

engendrer des calculs algébriques plus intenses, notamment le calcul des 

dérivées … ou pas ! 
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En fait, le code que nous avons écrit pour la régression linéaire peut être 

utilisé pour des problèmes bien plus complexes. Il suffit de générer des 

variables polynômiales dans notre Dataset en utilisant la fonction 

PolynomialFeatures présente dans Sklearn. 

 

from sklearn.preprocessing import PolynomialFeatures   
   

 

Grâce au calcul matriciel (présent dans Numpy et Sklearn) la machine 

peut intégrer ces nouvelles variables polynômiales sans changer son 

calcul ! 

Dans l’exemple ci-dessous, j’ai choisi d’ajouter une variable polynômiale 

de degré 2 pour forcer la machine à développer un modèle qui épousera 

l’allure parabolique de 𝒚 en fonction de 𝒙. 

 

np.random.seed(0)   
   
# création du Dataset   
x, y = make_regression(n_samples=100, n_features=1, noise=10)   
y = y**2 # y ne varie plus linéairement selon x !   
   
   
# On ajoute des variables polynômiales dans notre dataset   
poly_features = PolynomialFeatures(degree=2, include_bias=False)   
x = poly_features.fit_transform(x)   
   
   
plt.scatter(x[:,0], y)   
x.shape # la dimension de x: 100 lignes et 2 colonnes   
   

 

 

# On entraine le modele comme avant ! rien ne change ! 
model = SGDRegressor(max_iter=1000, eta0=0.001)   
model.fit(x,y)   
print('Coeff R2 =', model.score(x, y))   
   
plt.scatter(x[:,0], y, marker='o')   
plt.scatter(x[:,0], model.predict(x), c='red', marker='+')   
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Avec la fonction PolynomialFeatures on peut ainsi développer des 

modèles bien plus complexes capable de prédire des résultats sur des 

milliers de dimensions (un exemple ci-dessous) 
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Résumé de ce Chapitre 

Pour faire vos premiers pas dans le Machine Learning, vous avez installé 

Anaconda Python qui comprend tous les outils et librairies nécessaires 

(Jupyter, Numpy, Sklearn etc). 

Avec Sklearn, il suffit d’écrire quelques lignes pour développer des 

modèles de Régression Linéaire et Polynômiale. Vous devez vous souvenir 

des fonctions suivantes 

• model = SGDRegressor( nb_itérations, learning_rate) 

• model.fit(x, y) : pour entrainer votre modèle. 

• model.score(x, y) : pour évaluer votre modèle. 

• model.predict(x) : pour générer des prédictions. 

 

Je n’ai pas parlé de la fonction de Sklearn.linear_model.LinearRegression 

car cette méthode n’intègre pas l’algorithme de Gradient Descent. Elle 

repose en fait sur les Equations Normales, et fonctionne très bien, 

mais s’adapte mal aux gros Datasets (quand il y a plusieurs centaines de 

features). Nous utiliserons cependant cette méthode dans le Chapitre 7. 
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Chapitre 4 : Régression 
Logistique et 

Algorithmes de 
Classification 

 

 

Dans l’apprentissage supervisé, il y a deux type de problèmes : 

• Les régressions 

• Les classifications 

Dans ce chapitre, vous allez découvrir le modèle de Régression 

Logistique, qui permet de résoudre des problèmes de classification 

binaires.  

Je vais aussi vous présenter un des algorithmes les plus populaires et 

simple : Le K-Nearest Neighbour.   
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Les problèmes de Classification 

Jusqu’à présent, nous avons appris comment résoudre des problèmes de 

régression. Au cours du chapitre 1, j’ai parlé des problèmes de 

classification, qui consistent par exemple à classer un email en tant que 

‘spam’ ou ‘non spam’. 

Dans ce genre de problème, on aura un Dataset contenant une variable 

target 𝒚 pouvant prendre 2 valeurs seulement, par exemple 0 ou 1 

• si 𝑦 =  0, alors l’email n’est pas un spam 

• si 𝑦 =  1, alors l’email est un spam 

 

On dit également que l’on a 2 classes, c’est une classification binaire. 

 

Pour ces problèmes, on ajoute au modèle une frontière de décision qui 

permet de classer un email dans la 𝑐𝑙𝑎𝑠𝑠𝑒 0 ou la 𝑐𝑙𝑎𝑠𝑠𝑒 1. 
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Le modèle de Régression logistique 

Pour les problèmes de classification binaire, un modèle linéaire 𝑭 = 𝑿. 𝜽,  

comme je l’ai tracé sur la figure précédente, ne convient pas. Voyez 

plutôt le résultat que l’on obtient avec un tel modèle pour le Dataset 

suivant : 

 

On développe alors une nouvelle fonction pour les problèmes de 

classification binaire, c’est la fonction logistique (aussi appelé fonction 

sigmoïde ou tout simplement sigma 𝝈). Cette fonction a la particularité 

d’être toujours comprise en 0 et 1. 

 

Pour coller la fonction logistique sur un Dataset (𝑿, 𝒚) on y fait passer le 

produit matriciel 𝑿. 𝜽 ce qui nous donne le modèle de Logistic 

Regression : 

𝝈(𝑿. 𝜽) =  
𝟏

𝟏 +  𝒆− 𝑿.𝜽 
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A partir de cette fonction, il est possible de définir une frontière de 

décision. Typiquement, on définit un seuil à 0.5 comme ceci : 

{
 𝒚 = 𝟎 𝒔𝒊 𝝈(𝑿. 𝜽) < 𝟎. 𝟓

 𝒚 = 𝟏 𝒔𝒊 𝝈(𝑿. 𝜽) ≥ 𝟎. 𝟓
 

 

Fonction Coût associée à la Régression Logistique 

Pour la régression linéaire, la Fonction Coût 𝑱(𝜽) =  
𝟏

𝟐𝒎
∑(𝑿. 𝜽 − 𝒀)𝟐 donnait 

une courbe convexe (qui présente un unique minima). C’est ce qui fait 

que l’algorithme de Gradient Descent fonctionne. 

En revanche, utiliser cette fonction pour le modèle Logistique ne donnera 

pas de courbe convexe (dû à la non-linéarité) et l’algorithme de Gradient 

Descent se bloquera au premier minima rencontré, sans trouver le 

minimum global. 
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Il faut donc développer une nouvelle Fonction Coût spécialement pour la 

régression logistique. On utilise alors la fonction logarithme pour 

transformer la fonction sigma en fonction convexe en séparant les cas 

où 𝑦 =  1 des cas où 𝑦 =  0. 

 

 

Fonction Coût dans les cas où 𝑦 =  1 

Voici la Fonction Coût que l’on utilise dans les cas où 𝑦 =  1 : 

𝑱(𝜽) =  − 𝐥𝐨𝐠 (𝝈(𝑿. 𝜽)) 

Explications : 

Si notre modèle prédit 𝜎(𝑥)  =  0 alors que 𝑦 =  1, on doit pénaliser la 

machine par une grande erreur (un grand coût). La fonction logarithme 

permet de tracer cette courbe avec une propriété convexe, ce qui 
poussera le Gradient Descent à trouver les paramètres 𝜽 pour un coût 

qui tend vers 0. 
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Fonction Coût dans les cas où 𝑦 =  0 

Cette fois la Fonction Coût devient : 

𝑱(𝜽) =  − 𝐥𝐨𝐠 (𝟏 − 𝝈(𝑿. 𝜽)) 

 

Explications : 

Si notre modèle prédit 𝜎(𝑥)  =  1 alors que 𝑦 =  0, on doit pénaliser la 

machine par une grande erreur (un grand coût). Cette fois − 𝐥𝐨𝐠 (𝟏 − 𝟎) 

donne la même courbe, inversée sur l’axe vertical. 

 

Fonction Coût complète 

Pour écrire la Fonction Coût en une seule équation, on utilise l’astuce de 

séparer les cas 𝑦 =  0 𝑒𝑡 𝑦 =  1 avec une annulation : 

𝑱(𝜽) =  
− 𝟏

𝒎
 ∑ 𝒚 × 𝐥𝐨𝐠( 𝝈(𝑿. 𝜽)) + (𝟏 − 𝒚) × 𝐥𝐨𝐠(𝟏 −  𝝈(𝑿. 𝜽)) 

 

Dans le cas où 𝑦 =  0, il nous reste : 

𝐽(𝜃) =  
− 1

𝑚
 ∑ 0 × log(𝜎(𝑋. 𝜃)) + 𝟏 × 𝐥𝐨𝐠(𝟏 − 𝝈(𝑿. 𝜽)) 

 

Et dans le cas où 𝑦 =  1 

𝐽(𝜃) =  
− 1

𝑚
 ∑ 𝟏 × 𝐥𝐨𝐠(𝝈(𝑿. 𝜽)) + 0 × log(1 − 𝜎(𝑋. 𝜃)) 

 



Chapitre 4 : Régression Logistique et Algorithmes de Classification 

53 
Tous droits réservés © 2019 Guillaume Saint-Cirgue 

machinelearnia.com 

Gradient Descent pour la Régression Logistique 

L’algorithme de Gradient Descent s’applique exactement de la même 

manière que pour la régression linéaire. En plus, la dérivée de la 

Fonction Coût est la même aussi ! On a : 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡: 
𝝏 𝑱(𝜽)

𝝏 𝜽
=  

𝟏

𝒎
∑( 𝝈(𝑿. 𝜽) − 𝒚). 𝑿 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐷𝑒𝑠𝑐𝑒𝑛𝑡: 𝜽 =  𝜽 −  𝜶 ×
𝝏 𝑱(𝜽)

𝝏 𝜽
 

Résumé de la Régression Logistique 

𝑴𝒐𝒅è𝒍𝒆: 𝜎(𝑋. 𝜃)  =  
1

1 + 𝑒−𝑋.𝜃
 

𝑭𝒐𝒏𝒄𝒕𝒊𝒐𝒏 𝑪𝒐û𝒕: 𝐽(𝜃) =  
− 1

𝑚
 ∑ 𝑦 × log( 𝜎(𝑋. 𝜃)) + (1 − 𝑦) × log(1 −  𝜎(𝑋. 𝜃)) 

𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕: 
𝜕 𝐽(𝜃)

𝜕 𝜃
=  

1

𝑚
 𝑋𝑇 . ( 𝜎(𝑋. 𝜃) − 𝑦) 

𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕 𝑫𝒆𝒔𝒄𝒆𝒏𝒕: 𝜃 =  𝜃 −  𝛼 ×
𝜕 𝐽(𝜃)

𝜕 𝜃
 

 

Développer un programme de classification 

binaire dans Jupyter 

On est reparti dans Jupyter ! Comme pour le chapitre 3, nous allons 

générer des données aléatoires, mais cette fois-ci avec la fonction 

make_classification. Commençons par importer nos modules habituels : 

import numpy as np   
import matplotlib.pyplot as plt   
from sklearn.datasets import make_classification   
from sklearn.linear_model import SGDClassifier   

 

# Génération de données aléatoires: 100 exemples, 2 classes, 2 features x0 et x1   
np.random.seed(1)   
X, y = make_classification(n_samples=100,n_features=2, n_redundant=0, n_informative=1,  
                             n_clusters_per_class=1)   
   
# Visualisation des données   
plt.figure(num=None, figsize=(8, 6))   
plt.scatter(x[:,0], x[:, 1], marker = 'o', c=y, edgecolors='k')   
plt.xlabel('X0')   
plt.ylabel('X1')   
x.shape   
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Ensuite, nous devons créer un modèle en utilisant SGDClassifier. 

# Génération d'un modele en utilisant la fonction cout 'log' pour Logistic Regression   
model = SGDClassifier(max_iter=1000, eta0=0.001, loss='log')   
   
model.fit(X, y)   
print('score:', model.score(x, y))   
   

 

Une fois le modèle entraîné, on peut afficher sa frontière de décision avec 

le code suivant…un peu compliqué je vous l’accorde, mais un simple 

copier/coller fera l’affaire, pas vrai ? ☺ 

# Visualisation des données   
h = .02   
colors = "bry"   
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1   
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1   
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),   
                     np.arange(y_min, y_max, h))   
   
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])   
Z = Z.reshape(xx.shape)   
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)   
plt.axis('tight')   
   
for i, color in zip(model.classes_, colors):   
    idx = np.where(y == i)   
    plt.scatter(X[idx, 0], X[idx, 1], c=color, cmap=plt.cm.Paired, edgecolor='black', s
=20)   
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Vous pouvez désormais réutiliser ce code sur vos propres données pour 

ainsi prédire si un email est un spam ou encore si une tumeur est maligne 

ou non. 

Bon. Nous avons vu jusqu’à présent des algorithmes bourrés de maths et 

donc pas forcément fun à étudier… mais ça va changer tout de suite ! 

 

L’Algorithme de Nearest Neighbour 

Je vais désormais vous montrer l’algorithme qui est probablement le plus 

simple à comprendre de tous ! 

L’algorithme de Nearest Neighbour (le voisin le plus proche) permet de 

résoudre des problèmes de classification à plusieurs classes de façon 

simple et très efficace. 
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Promenade en Montage 

Vous partez vous promener en montagne avec un ami. Avant de partir, il 

fait 30 °C et votre ami vous dit qu’il a chaud. Arrivé en montagne, il fait 

désormais 10 °C et votre ami vous dit qu’il a froid. 

En redescendant la vallée, il fait maintenant 15 °C, pensez-vous que 

votre ami aura froid ou bien chaud ? 

15 °C étant plus proche de 10 °C (froid) que de 30 °C (chaud), il semble 

légitime de prédire que votre ami aura froid. 

10°C 30°C

15°C

Froid Chaud

Froid Chaud ?ou

 

 

Voilà l’essentiel de ce qu’il y à savoir sur l’algorithme Nearest 

Neighbour. Quand vous devez faire une nouvelle prédiction, trouvez 

dans votre Dataset l’exemple le plus proche par rapport aux conditions 

dans lesquelles vous êtes. 

Eh ! Qui a dit que le Machine Learning était difficile ? 

Note : 

Cet exemple vous montre au passage que la variété et la quantité de 

données dans votre Dataset est primordiale ! Si vous ne disposez que de 

2 points : -20 °C = froid ; 20 °C = chaud, alors vous pourriez conclure 

que 1 °C est une température chaude… Pas sûr que ça plaise à tout le 

monde ! On en reparlera dans le Chapitre 7. 
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K-Nearest Neighbour (K-NN) 

La distance la plus courte 

Regardez le nuage de points qui suit. Quel est le l’exemple le plus proche 

du point vert ? C’est un exemple de la classe rouge. L’algorithme de 

Nearest Neighbour calcule ainsi la distance entre le point vert et les 

autres points du Dataset et associe le point vert à la classe dont l’exemple 

est le plus proche en terme de distance. 

 

Typiquement, on utilise la distance euclidienne (c’est la droite direct 

entre deux points) mais d’autres métriques sont parfois plus utiles, 

comme la distance de Manhattan ou bien la distance cosinus. 

Inutile de rentrer dans les détails mathématiques, vous savez désormais 

que Sklearn implémente toutes les équations pour vous. 

 

Le nombre de voisin K 

Pour limiter les problèmes liés au bruit (ce qu’on appelle Over fitting, et 

que nous verrons dans le chapitre 7) on peut demander à l’algorithme de 

trouver les K voisins les plus proches du point vert. 

Cela améliore la qualité du modèle car il devient moins sensible aux 

impuretés et cas particuliers qui viendraient empêcher la bonne 

généralisation (Chapitre 7). 
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Vision par ordinateur avec K-NN dans Jupyter 

Cette fois ci, je vous propose de développer un programme capable de 

reconnaitre un chiffre entre 0 et 9 écrit à la main. Fini les données 

générées aléatoirement ! Voici les chiffres que la machine saura 

reconnaitre dans quelques minutes. 

 

Vous pouvez charger ces données depuis Sklearn (la librairie contient des 

Datasets de base). 

Commençons par importer les libraires habituelles : 

import numpy as np   
import matplotlib.pyplot as plt   
from sklearn.datasets import load_digits   
from sklearn.neighbors import KNeighborsClassifier   

  

Le code ci-dessous montre un exemple de chiffre présent dans le Dataset, 

c’est un exemple du chiffre 0. 

On apprend aussi que le Dataset comprend 1797 exemples, c’est-à-dire 

1797 images, et que chaque exemple contient 64 features.  

Que sont ces 64 features ? il s’agit de la valeur de chacun des 64 pixels 

qui forment les images. 

Quand on soumet un nouveau chiffre à la machine, l’algorithme de K-NN 

trouve l’exemple du Dataset qui ressemble le plus à notre chiffre, basé 

sur le voisin le plus proche pour la valeur de chaque pixel. 
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# importons une base de données de chiffre   
digits = load_digits()   
   
X = digits.data   
y = digits.target   
   
print('dimension de X:', X.shape)   
   

 

 

L’étape suivante consiste à entraîner le modèle de Nearest Neighbour. En 

exécutant le code vous-même, vous devriez obtenir un score de 99%, ce 

qui signifie que votre modèle reconnaitra le bon chiffre 99% du temps. 

Perso, je trouve ça impressionnant. Aujourd’hui, vous pourrez clairement 

dire que vous savez faire du Machine Learning ! 

# visualisons un de ces chiffres   
plt.imshow(digits['images'][0], cmap = 'Greys_r')   
   
# Entraînement du modele   
model = KNeighborsClassifier()   
model.fit(X, y)   
model.score(X, y)   

   

Pour finir en beauté, testons une image au hasard et voyons si la machine 

arrive à identifier de quel chiffre il s’agit. En l’occurrence, j’ai choisi de 

tester la 100ième image de notre Dataset, qui est un 4… et la machine a su 

la reconnaître ! 

#Test du modele   
test = digits['images'][100].reshape(1, -1)   
plt.imshow(digits['images'][100], cmap = 'Greys_r')   
model.predict(test)   
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Bravo pour avoir su développer votre premier vrai programme de vision 

par ordinateur ! 

 

Bilan de ce chapitre 

Dans ce chapitre, vous avez appris 2 algorithmes très populaires pour les 

problèmes de Classification : 

- La Régression Logistique avec Gradient Descent 

- Le K-Nearest Neighbour. 

La fonction Logistique est une fonction importante dans l’histoire du 

Machine Learning. C’est elle que l’on trouve au cœur des neurones des 

fameux Réseaux de Neurones, dont nous allons parler dans le prochain 

chapitre. 
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Dans ce dernier chapitre sur l’apprentissage supervisé, nous allons 

démystifier les fameux Réseaux de Neurones. Ces modèles qui font le 

buzz aujourd’hui sont utilisés pour la reconnaissance vocale, la vision par 

ordinateur et autres applications complexes. 

Vous allez apprendre : 

• Ce qu’est le Deep Learning 

• Ce qui compose un Réseau de Neurones dans les détails 

• Comment programmer votre premier Réseau de Neurones  
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Introduction aux Réseaux de Neurones 

Ah ! Il est temps de sortir l’artillerie lourde avec les Réseaux de 

Neurones (Neural Network) qui font aujourd’hui le succès du Deep 

Learning. 

Les Réseaux de Neurones sont des modèles bien plus complexes que 

tous les autres modèles de Machine Learning dans le sens où ils 

représentent des fonctions mathématiques avec des millions de 

coefficients (les paramètres). Rappelez-vous, pour la régression linéaire 

nous n’avions que 2 coefficients 𝑎 𝑒𝑡 𝑏… 

 

 

Avec une telle puissance, il est possible d’entraîner la machine sur des 

tâches bien plus avancées : 

• La reconnaissance d’objets et reconnaissance faciale 

• L’analyse de sentiments 

• L’analyse du langage naturel 

• La création artistique 

• Etc. 

 

Cependant, développer une fonction aussi complexe à un coût. Pour y 

parvenir, il faut souvent fournir : 

• Un Dataset beaucoup plus grand (des millions de 

données) 

• Un temps d’apprentissage plus long (parfois plusieurs 

jours) 

• Une plus grande puissance de calcul. 
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Pour dépasser ces challenges, les chercheurs dans le domaine ont 

développés des variantes du Gradient Descent ainsi que d’autres 

techniques pour calculer plus rapidement les dérivées sur des millions de 

données. Parmi ces solutions on trouve : 

• Mini-Batch Gradient Descent : Technique pour laquelle 

le Dataset est fragmenté en petits lots pour simplifier le 

calcul du gradient à chaque itération. 

• Batch Normalization: Mettre à la même échelle toutes 

les variables d’entrée et de sortie internes au Réseau de 

Neurone pour éviter d’avoir des calculs de gradients 

extrêmes. 

• Distributed Deep Learning : Utilisation du Cloud pour 

diviser le travail et le confier à plusieurs machines. 

 

Sans plus tarder, voyons l’anatomie d’un Réseau de Neurones pour 

démystifier ce concept. 

 

Comprendre les Réseaux de Neurones 

Voilà à quoi ressemble un Réseau de Neurones : 

 

Vous remarquez un niveau d’entrées (input layer) à gauche, un niveau de 

sorties (output layer) à droite, et plusieurs niveaux cachés entre deux. 

Les petits ronds sont appelés les neurones et représentent des 

fonctions d’activation. Pour un réseau de neurone basique, la fonction 

Logistique est utilisée comme fonction d’activation. C’est pour cela que 

nous l’avons vue dans le chapitre 4. 

Commençons par analyser ce qui se passe dans 1 neurone. 
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Réseau de Neurone à 1 Neurone : Le perceptron 

Le réseau de Neurones le plus simple qui existe porte le nom de 

perceptron. Il est identique à la Régression Logistique du chapitre 4. 

Les entrées du neurone sont les features 𝒙 multipliées par des 

paramètres 𝜽 à apprendre. Le calcul effectué par le neurone peut être 

divisé en deux étapes : 

1. Le neurone calcule la 𝒔𝒐𝒎𝒎𝒆 𝒛 de toutes les entrées 𝒛 =

 ∑ 𝒙𝜽. C’est un calcul linéaire 

2. Le neurone passe z dans sa fonction d’activation. Ici la 

fonction sigmoïde (fonction Logistique). C’est un calcul 

non-linéaire. 

 

Note : 

On utilise souvent d’autres fonctions d’activation que la fonction 

sigmoïde pour simplifier le calcul du gradient et ainsi obtenir des cycles 

d’apprentissage plus rapides : 

• La fonction tangente hyperbolique tanh (𝑧) 

• La fonction 𝑅𝑒𝑙𝑢(𝑧) 

 

Réseaux à plusieurs neurones : le Deep Learning 

Pour créer un Réseaux de Neurones, il suffit de développer plusieurs de 

ces perceptrons et de les connecter les uns aux autres d’une façon 

particulière : 



Chapitre 5 : Réseaux de Neurones 

65 
Tous droits réservés © 2019 Guillaume Saint-Cirgue 

machinelearnia.com 

• On réunit les neurones en colonne (on dit qu’on les réunit 

en couche, en layer). Au sein de leur colonne, les 

neurones ne sont pas connectés entre eux. 

• On connecte toutes les sorties des neurones d’une colonne 

à gauche aux entrées de tous les neurones de la colonne 

de droite qui suit. 

On peut ainsi construire un réseau avec autant de couches et de neurones 

que l’on veut. Plus il y a de couches, plus on dit que le réseau est 

profond (deep) et plus le modèle devient riche, mais aussi difficile à 

entraîner. C’est ça, le Deep Learning. 

Voici un exemple d’un réseau à 5 neurones (et 3 layers). Tous les layers 

entre la couche d’entrée et la couche de sortie sont dits cachés car nous 

n’avons pas accès à leur entrées/sorties, qui sont utilisées par les layers 

suivants. 

 

Input
layer

Output
layer

hidden
layer

Sortie

En
tr

ée
s

 

 

Dans les détails, un réseau plus simple (à 3 neurones) nous donnerait la 

sortie 𝒂𝟑 =  𝝈(𝜽𝟏𝒂𝟏 +  𝜽𝟐𝒂𝟐) où 𝜽𝟏 et 𝜽𝟐 sont les coefficients liés aux 

connections entre neurones 𝒂𝟏 → 𝒂𝟑 et 𝒂𝟐 → 𝒂𝟑. Ce sont les paramètres 

de notre modèle. 

Dans le réseau suivant, on a donc 6 paramètres (que je différencie par les 

couleurs, la réelle annotation des paramètres étant plus complexe). 
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C’est comme le cerveau humain ? 

On a longtemps fait le rapprochement entre le cerveau humain et les 

Neural Network pour démontrer la puissance de ces algorithmes. Voici 

l’analogie qui est encore aujourd’hui présentée aux novices : 

La fonction d’activation produit une sortie si les entrées qu’elle reçoit 

dépassent un certain seuil, à la manière qu’un neurone biologique produit 

un signal électrique en fonction des stimulus qu’il reçoit aux Dendrites 

(ce sont les entrées du neurone). 

Dans un Neurone, ce signal circule jusqu’aux différents terminaux de 

l’axone pour être transmis à d’autres neurones, tout comme la fonction 

activation envoie sa sortie aux neurones du niveau suivant. 

 

En réalité, les Réseaux de Neurones n’ont rien à voir avec le cerveau 

humain. Désolé… 
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Un Réseau de Neurone n’est en fait qu’une énorme composée de milliers 

de fonctions mathématiques, et aujourd’hui les neuroscientifiques ont 

démontré que le fonctionnement du cerveau dépasse de loin l’architecture 

« simpliste » des réseaux de neurones. 

 

Pourquoi utilise-t-on alors l’expression de Réseau de Neurone ? 

Sûrement parce que l’analogie avec les neurones facilite la 

compréhension de ce type de modèle, mais également parce que 

l’utilisation de ce Buzz word a permis de solliciter l’intérêt des 

journalistes et des entreprises dans les années 2010. Une histoire de 

marketing… 

L’entraînement d’un Réseau de Neurone 

Rappelez-vous : Pour résoudre un problème de Supervised Learning, il 

vous faut les 4 éléments suivants. 

1. Un Dataset 

2. Un Modèle et ses paramètres 

3. Une Fonction Coût et son gradient 

4. Un Algorithme de minimisation (Gradient Descent) 

 

• Pour le Dataset, pas de problème, il suffit de disposer d’un tableau 

(𝑿, 𝒚) comme pour les autres problèmes. Les features (𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … ) sont 

distribuées à l’entrée du réseau (dans le premier layer)  

 

• Pour programmer le Modèle, il faut emboîter les fonctions des 

différent niveaux d’activation les unes dans les autres comme je l’ai 

montré plus haut pour l’exemple des 3 neurones. C’est ce qu’on 

appelle Forward Propagation (faire le chemin des entrée 𝑿 vers la 

sortie 𝒚). 

 

• Pour exprimer la Fonction Coût et son gradient, c’est 

mathématiquement délicat. Il faut calculer la contribution de chaque 

neurone dans l’erreur finale. Tout ce que vous avez à savoir, c’est que 

cela est possible avec une technique appelée Back Propagation (faire 

le chemin dans le sens inverse : 𝒚 vers 𝑿). 

 

• Enfin, pour minimiser la Fonction Coût, il suffit d’utiliser Gradient 

Descent en utilisant les gradients calculés avec Back Propagation. Le 

Gradient Descent en lui-même n’est pas différent de celui que nous 

avons vu dans le chapitre 2 (bonne nouvelle). 
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Programmer votre premier Réseau de Neurones 

pour identifier des espèces d’Iris. 

Normalement, on développe des Réseaux de Neurones avec un 

Framework comme Tensorflow, mais l’apprentissage de cet outil 

dépasse un peu le cadre de ce livre. Cependant, je veux bien me faire 

violence en vous montrant comment faire avec Sklearn ☺. Pour cela, il 

faudra importer MLPClassifier (qui signifie : Multi-Layer Perceptron 

Classifier). 

Cette fois, je vous propose de développer un programme capable de 

reconnaitre une espèce parmi plusieurs de la famille des Iris. L’algorithme 

utilise 4 features pour effectuer son calcul : 

• 𝒙𝟏 : La longueur du pétale 

• 𝒙𝟐 : La largeur du pétale 

• 𝒙𝟑 : La longueur du sépale 

• 𝒙𝟒 : La largeur du sépale 

 

import numpy as np   
import matplotlib.pyplot as plt   
from sklearn.datasets import load_iris   
from sklearn.neural_network import MLPClassifier   
   
# charger les données   
iris = load_iris()   
   
X = iris.data   
y = iris.target   
   
X.shape # notre Dataset comprend 150 exemples et 4 variables   
   
# Visualisation des donées   
colormap=np.array(['Red','green','blue'])   
plt.scatter(X[:,3], X[:,1], c = colormap[y])   

 

Pour développer un réseau à 3 hidden layers et 10 neurones dans chaque 

layer, j’utilise le code suivant : hidden_layer_sizes=(10, 10, 10)  

# Création du modele   
model = MLPClassifier(hidden_layer_sizes=(10, 10, 10), max_iter=1000)   
model.fit(X, y)   
model.score(X, y)   
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Normalement, vous devriez obtenir un score de 98% pour votre Neural 

Network. Cela signifie que la machine arrive à prédire la bonne espèce de 

fleur 98% du temps. 

 

Résumé de l’apprentissage supervisé 

C’est avec les Réseaux de Neurones que s’achève ces 4 chapitres sur 

l’apprentissage supervisé, qui est la technique la plus utilisée en 

Machine Learning et en Deep Learning. Rappelez-vous qu’il existe 2 

familles de problèmes dans l’apprentissage supervisé : 

• Les Régressions 

• Les Classifications 

Pour résoudre ces problèmes, ne perdez jamais de vue les 4 étapes 

essentielles pour développer votre modèle : 

1. Dataset 

2. Modèle 

3. Fonction Coût 

4. Algorithme de minimisation 

Avec Sklearn, vous pouvez développer des modèles de Machine Learning 

simplement en utilisant les fonctions que nous avons vues et qui intègrent 

directement les étapes 3 et 4. Il ne vous reste alors qu’à : 

1. Importer un Dataset 

2. Choisir un modèle parmi ceux proposés par sklearn : 
o SGDRegressor() 

o KNeighborsClassifier() 

o MLPClassifier() 

o Etc… 

3. Utiliser la fonction model.fit pour effectuer l’apprentissage 

 

Il existe beaucoup d’algorithmes de Régression et de Classification, je n’ai 

pas parlé de Support Vector Machine ou bien de Random Forest, mais 

vous pouvez trouver plus d’information à ce sujet sur machinelearnia.com 

 

Dans le prochaine chapitre, vous allez découvrir une nouvelle technique 

d’apprentissage, dont la méthodologie est bien différente de celle que 

nous avons vue jusqu’à présent : L’apprentissage non-supervisé.  

http://www.machinelearnia.com/
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Dans ce chapitre, vous allez découvrir la deuxième technique 

d’apprentissage utilisée en Machine Learning : L’apprentissage non-

supervisé. 

Vous allez apprendre l’algorithme le plus populaire dans cette technique : 

le K-Mean Clustering, qui permet de segmenter des données clients 

dans le monde du marketing, ou bien de faciliter la recherche scientifique 

en associant ensemble des molécules/matériaux/phénomènes semblables.   
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Unsupervised Learning 

Le problème de l’Apprentissage Supervisé 

D’un certain point de vue, l’apprentissage supervisé consiste à enseigner 

à la machine des choses que nous connaissons déjà, étant donné que 

nous construisons à l’avance un Dataset qui contient des questions 𝑿 et 

des réponses 𝒚. 

Que faire alors si vous disposez d’un Dataset sans valeur 𝒚 ? Que faire si 

vous voulez que la machine vous aide à compléter vos connaissances en 

apprenant certaines choses que vous ignorez ? 

 

Rappelez-vous, dans le Chapitre 1, nous avons parlé d’apprendre la 

langue chinoise à partir d’un livre de traduction (𝑥, 𝑦). Que faire alors si je 

vous retire le bouquin et que je vous envoie vivre seul en Chine ? 

Arriverez-vous à apprendre le chinois tout seul ? Il y a forcément un 

moyen d’y parvenir, c’est ce qu’on appelle l’apprentissage non-supervisé 

(Unsupervised Learning). 
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Comment apprendre sans exemple de ce qu’il faut 

apprendre ? 

Regardez ces 6 photos. Pouvez-vous les regrouper en 2 familles selon leur 

ressemblance ? 

 

 

Bien sûr ! C’est même plutôt simple. Nul besoin de savoir s’il s’agit de 

cellules animales, de bactéries ou de protéines pour apprendre à classer 

ces images. Votre cerveau a en fait reconnu des structures communes 

dans les données que vous lui avez montrées. 

GROUPE A GROUPE B

 

 

Dans l’apprentissage non-supervisé, on dispose ainsi d’un Dataset (𝑥) 

sans valeur (𝑦), et la machine apprend à reconnaitre des structures 

dans les données (𝑥) qu’on lui montre. 

On peut ainsi regrouper des donnés dans des clusters (c’est le 

Clustering), détecter des anomalies, ou encore réduire la dimension 

de données très riches en compilant les dimensions ensembles. 
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Algorithme de K-Mean Clustering 

Le K-Mean Clustering est sans doute l’algorithme le plus populaire pour 

les problèmes de Clustering (regrouper des données selon leur structure 

commune). Il est souvent utilisé en marketing pour cibler des groupes de 

clients semblables pour certaines campagnes publicitaires. 

L’algorithme fonctionne en 2 étapes répétées en boucle. On commence 

par placer au hasard un nombre K de centres dans notre nuage de 

points. Dans l’exemple ci-dessous, K=2. Ensuite : 

- L’étape 1 consiste à rallier chaque exemple au centre le plus 

proche. Après cette étape, nous avons K Clusters (ici 2 clusters) 

- L’étape 2 consiste à déplacer les centres au milieu de leur Cluster. 

 

On répète ainsi les étapes 1 et 2 en boucle jusqu’à ce que les centres ne 

bougent plus. 
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Programmer un K-Mean Clustering 

La librairie Sklearn nous permet aussi de faire du Unsupervised Learning ! 

La fonction make_blobs permet de simuler des clusters dans un Dataset. 

import numpy as np   
import matplotlib.pyplot as plt   
from sklearn.datasets.samples_generator import make_blobs   
from sklearn.cluster import KMeans   

 

Pour cet exemple, nous allons créer un Dataset de 100 exemples à 2 

features, en simulant 3 clusters. 

# Générer des données:   
X, y = make_blobs(n_samples=100, centers = 3, cluster_std=0.5, random_state=0) #nb_feat
ures = 2 par défaut   
plt.scatter(X[:,0], X[:, 1])   

 

Dans le code ci-dessous, on entraîne un modèle de K-Mean Clustering à 3 

centres (K=3). J’ai aussi affiché les résultats que l’on obtient avec K = 2 

et K = 4.  

# Entrainer le modele de K-mean Clustering   
model = KMeans(n_clusters=3)   
model.fit(X)   
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#Visualiser les Clusters   
predictions = model.predict(X)   
plt.scatter(X[:,0], X[:,1], c=predictions)   

K = 2 K = 3 K = 4
 

La prochaine fois que vous avez à disposition un tableau de données sur 

vos clients, sur les caractéristiques d’un produit, ou sur des documents 

que vous devez classer, pensez à utiliser le K-Mean Clustering pour laisser 

la machine proposer sa méthode de classement.  

 

Pour finir, prenons le Dataset des fleurs d’Iris que vous avez su classer 

grâce à un réseau de neurones dans le chapitre 5 et voyons les clusters 

produits par l’algorithme de K-Mean Clustering. 

K-Mean ClusteringNeural Network
  

Les résultats sont très ressemblants, preuve qu’il est possible de faire de 

bonnes classifications même avec des Datasets (𝑥) sans valeur (𝑦) en 

utilisant l’apprentissage non-supervisé. 
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Conclusion sur le Unsupervised Learning 

Dans l’apprentissage supervisé, la machine reçoit un Dataset où les 

exemples (𝒙) sont étiquetés d’une valeur (𝒚) (on appelle ça un Labelled 

Dataset). Il est alors possible de trouver une relation générale qui relie (𝑥) 

à (𝑦). 

Dans l’apprentissage non-supervisé, nous ne pouvons pas faire cela, 

parce qu’il manque la variable (𝑦) à notre Dataset. Il est donc Unlabelled. 

 

Apprentissage Supervisé
Labelled Dataset (x, y)

Apprentissage Non-Supervisé
Unlabelled Dataset (x)

 

 

Mais cela ne nous empêche pas de pouvoir segmenter le Dataset en 

différents Clusters grâce au K-Mean Clustering, ou bien de détecter des 

anomalies en calculant des densités de probabilités (dont nous n’avons 

pas parlé). Avec d’autres algorithmes (le Principal Component Analysis) 

on peut aussi réduire efficacement les dimensions d’un Dataset. 

Avec ces méthodes, il est possible de segmenter un marché, de 

développer des systèmes de détection de fraude bancaire, ou d’aider la 

recherche scientifique. 

Maintenant que vous connaissez les principaux outils du Machine 

Learning, il est temps d’apprendre comment se servir de ces outils pour 

résoudre de vrais problèmes. C’est l’objet du chapitre final de ce livre ! 
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Votre voyage arrive à sa fin. Au cours de ce livre, vous avez appris des 

algorithmes puissants et réellement utilisés dans l’industrie pour 

construire des modèles à partir de données. Mais un algorithme seul ne 

résout aucun problème. Il est temps d’apprendre comment utiliser vos 

connaissances pour résoudre des problèmes. Dans ce chapitre, vous 

allez apprendre : 

• Comment préparer votre Dataset 

• Comment lutter contre Le phénomène d’Over fitting 

• Comment diagnostiquer un modèle de Machine Learning 

avec le Train set et Test Set 

• Le cycle de développement d’un modèle de Machine 

Learning 
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L’erreur que font la majorité des Novices 

Beaucoup de gens travaillent longtemps leur maitrise des algorithmes au 

détriment de leur compétence à résoudre des problèmes. 

Pour mener à bien un projet de Machine Learning, il ne suffit pas de 

connaitre des algorithmes (comme ceux que nous avons appris dans ce 

livre) mais il faut également savoir comment se servir de ces algorithmes, 

ce que peu de gens savent bien faire ! 

C’est ce que vous allez apprendre dans ce dernier chapitre, qui est l’un 

des chapitres les plus importants de ce livre. 

Un exemple de scénario typique 

Votre patron souhaite automatiser la logistique de son usine. Il vous 

confie un Dataset et vous demande de développer un modèle de Machine 

Learning pouvant identifier différents fruits (pommes, poires, etc.) pour 

que la machine puisse les ranger automatiquement dans la bonne boîte. 

 

Vous entraînez un modèle complexe (par exemple un réseau de neurones 

avec beaucoup de layers) suffisamment longtemps pour minimiser la 

Fonction Coût et vous obtenez une précision de 99%. Bien joué ! 

Vous livrez ce modèle à votre patron, mais quelques jours plus tard il 

revient très mécontent : votre modèle n’est pas aussi bon que vous le 

prétendez, il a une précision de 70%. 

Que s’est-il passé ? 

Je vais vous dévoiler les causes plausibles et les erreurs à ne pas 

commettre pour éviter ce genre de situation, puis les solutions à ces 

challenges. Nous allons parler des 2 problèmes les plus courants en 

Machine Learning : 

- Une mauvaise préparation du Dataset 

- Le problème d’Over fitting 
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Le plus important, ce n’est pas l’algorithme, ce 

sont les Données 

 

Une étude menée en 2001 par Michelle Banko et Eric Brill montre que la 

performance d’un programme de Machine Learning dépend avant tout de 

la quantité de données que comporte votre Dataset. Cela explique en 

partie l’obsession qu’on les géants du Web (les GAFAM) à récolter des 

quantités colossales de données. 

L’étude révèle aussi que beaucoup d’algorithmes de Machine Learning 

sont similaires en terme de performance.  

 

Conséquence : Si vous avez plus de données que votre concurrent, vous 

êtes vainqueur, même si votre concurrent à un meilleur algorithme !  

Mais avoir beaucoup de données ne suffit pas, il faut aussi avoir de 

bonnes données et comprendre ces données. C’est ce point qui fait 

défaut à de nombreux Data Scientists. Pourtant, l’étape de préparation 

des données (Data pre-processing) représente le plus grand temps passé 

sur un projet de Machine Learning, voyons pourquoi. 

 

Data pre-processing: Comment préparer votre Dataset 

Lorsque vous recevez un Dataset, il est impératif de procéder à quelques 

retouches avant de commencer à faire du Machine Learning. Voici une 

liste des actions à compléter pour bien préparer son Dataset : 

• Il est fréquent qu’un Dataset contienne quelques anomalies, voire 

des erreurs, qu’il faut supprimer pour ne pas biaiser 

l’apprentissage de la machine (vous ne voudriez pas que la machine 

apprenne quelque chose de faux). 

 

• Il est aussi important de normaliser vos données, c’est-à-dire les 

mettre sur une même échelle pour rendre l’apprentissage de la 

machine plus rapide et aussi plus efficace. 
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• Si vous avez des valeurs manquantes, il faut être capable de leur 

assigner une valeur défaut. 

 

• Si vous avez des features catégoriales (exemple : homme/femme) 

il faut les convertir en données numériques (homme=0, femme=1). 

 

• Egalement, il est très important de nettoyer le Dataset des features 

redondantes (qui ont une forte corrélation) pour faciliter 

l’apprentissage de la machine. 

 

• Finalement, un point qui peut faire toute la différence est la création 

de nouvelles features, ce qu’on appelle feature engineering. 

Exemple : Prenez un Dataset immobilier qui contient les features : 

o 𝑥1 = 𝑙𝑜𝑛𝑔𝑢𝑒𝑢𝑟 𝑗𝑎𝑟𝑑𝑖𝑛 

o 𝑥2 = 𝑙𝑎𝑟𝑔𝑒𝑢𝑟 𝑗𝑎𝑟𝑑𝑖𝑛 

Alors il est possible de créer 𝑥3 = 𝑥1 × 𝑥2 qui équivaut à la surface du 

jardin. 

 

Typiquement, sklearn et pandas disposent des fonctions nécessaires 

pour faire un bon data pre-processing. Pour charger un fichier Excel au 

format csv dans Jupyter, utiliser la librairie pandas. 

import pandas as pd   
   
Dataset = pd.read_csv('dataset.csv')   
print(Dataset.head()) # afficher le Dataset   

 

Attention ! Le tableau que vous cherchez à importer doit convenir à un 

certain format. Pour vos débuts, assurez-vous d’avoir un fichier Excel qui 

ne contient que vos données (pas de notes ni commentaires) et qui 

commence dès la colonne A ligne 1 : 

Exemple à suivre

Exemple à NE PAS suivre

VS
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Vous pouvez ensuite utiliser certaines fonctions pour nettoyer votre 

Dataset, convertir les catégories en valeurs numériques, et charger 

votre Dataset dans une 𝒎𝒂𝒕𝒓𝒊𝒄𝒆 𝑿 et un 𝒗𝒆𝒄𝒕𝒆𝒖𝒓 𝒚 pour commencer le 

Machine Learning ! 

Dataset = Dataset.fillna(value=99999) # assigner une valeur défaut   
Dataset = pd.get_dummies(Dataset) # remplacer les catégories   
   
y = Dataset['prix'].values # Créer le vecteur target y   
X = Dataset.drop(['prix'], axis=1).values # Créer la matrice features X   

 

L’expertise est cruciale 

Jouer ainsi avec les données peut s’avérer dangereux si le Data Scientist 

n’a pas de connaissances techniques sur l’application finale : finance, 

médecine, ingénierie, climatologie, etc. 

Exemple : En donnant le Dataset suivant à un modèle de Machine 

Learning, vous obtiendrez une frontière de décision qui indique qu’il fait 

chaud quand la température est supérieure à 5 °C… 

 

Dans cette application aussi simple, vous avez une certaine expertise qui 

vous permet de rejeter la réponse de la machine, et vous comprenez que 

le Dataset a besoin d’être complété avec des données supplémentaires. 

Etes-vous certain d’avoir ce niveau d’expertise en médecine pour 

développer un modèle qui pourrait décider de la vie d’un patient ? 

Conclusion : vous serez un meilleur Data Scientist en travaillant sur les 

projets qui se rattachent à vos compétences techniques.  
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Les données doivent toujours venir de la même 

distribution 

Une dernière erreur que je veux partager avec vous et qui peut causer 

une chute de performance assez importante est l’utilisation d’un modèle 

de machine Learning sur des données provenant d’une autre 

distribution que les données sur lesquelles la machine a été entraînée.  

Par exemple, si vous développez un modèle pour reconnaitre des poires 

en donnant à la machine des photos Haute Définition de poires bien 

droites et sans taches, mais que la machine utilise ensuite une mauvaise 

caméra qui déforme les couleurs et qui voit les poires toutes empilées les 

unes sur les autres, le modèle ne pourra pas reconnaitre les features qu’il 

a appris durant l’entrainement avec la même précision. 

Ce que vous aviez donné à 
apprendre 

Ce que la machine voit 
après l’apprentissage

 

 

Conclusion  

Il est important de bien préparer son Dataset, en supprimant les 

défauts qu’il contient, en s’assurant qu’il représente des données 

provenant de la même distribution que pour l’application finale, et en 

comprenant en profondeur le sens des données dont on dispose. 

Le travail de préparation des données prend en général 80% du temps 

de travail d’un Data Scientist, mais s’il est bien fait, alors vous n’avez 

plus aucun problème par la suite. 

Plus aucun problème… sauf un : L’Over fitting. J’ai voulu garder ce 

point-là pour le sprint final du livre ! Vous êtes prêts ?  
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Over fitting et Régularisation 

Dans les chapitres d’apprentissage supervisé, nous avons développé des 

modèles en cherchant à minimiser les erreurs avec le Dataset. J’ai 

même affirmé (page 15) qu’un bon modèle nous donne de petites 

erreurs. En fait, ce n’est pas si simple… 

Que pensez-vous des deux modèles ci-dessous ?  

Dataset (x, y) Modèle A Modèle B

J = 0J ≥  0
 

Le modèle B ne donne aucune erreur par rapport au Dataset, donc 

d’après ce que nous avons vu, il devrait être parfait ! 

Pourtant, le modèle A semble plus convaincant, alors que celui-ci donne 

une Fonction Coût plus élevée. 

Le modèle B souffre ici d’un problème appelé Over fitting, qui est un 

phénomène très courant en Machine Learning et qu’il vous faut 

absolument éviter. 

 

Over fitting : A vouloir aller trop loin, on va TROP loin. 

On parle d’Over fitting pour dire que le modèle s’est trop spécialisé sur 

les données qui lui ont été fournies et a perdu tout sens de 

généralisation.  

Un Over fitting survient le plus souvent quand un modèle trop complexe 

(avec trop de paramètres ou trop de features) a été entraîné. Dans ce 

cas, le modèle a certes un faible coût 𝑱(𝜽), mais il a aussi ce qu’on appelle 

une grande variance. Conséquence : un modèle moins performant que 

prévu quand on le soumet à de nouvelles données et une machine qui 

confond les pommes et les poires. 
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Modèle A Modèle B

Sur le Dataset B était meilleur que A.
Mais sur de nouvelles données, A est meilleur que B  

On pourrait alors se dire qu’il suffit de développer des modèles moins 

complexes avec moins de features… Et Pouf ! Plus de problème de 

variance ! 

C’est vrai, Mais on risque alors d’avoir un modèle erroné qui manque de 

précision. On appelle ça Under fitting, et on dit que le modèle a un 

grand biais. 

Ce problème touche à la fois les régressions et les classifications : 

Under Fitting
Grand Biais

Over Fitting
Grande Variance

Le bon modèle

R
eg

re
ss

io
n

s
C

la
ss

if
ic

a
ti

o
n

 

Comment trouver alors le juste milieu entre biais et variance ? C’est une 

des grandes questions à laquelle sont confrontés les Data Scientists. 
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Il existe une méthode qui permet de garder toutes les features d’un 

modèle tout en régulant l’amplitude des paramètres 𝜽. Cette méthode 

porte justement le nom de Régularisation. 

 

La Régularisation 

La régularisation permet de limiter la variance d’un modèle sans sacrifier 

son biais. Pour cela, différentes techniques existent: 

1. On peut légèrement pénaliser la Fonction Coût du modèle en 

ajoutant un terme de pénalité sur ses paramètres. Pour la 

régression linéaire, la Fonction Coût devient alors : 

𝑱(𝜽) =  
𝟏

𝟐𝒎
 ∑(𝑭(𝑿) − 𝒀 )𝟐 +  𝝀 ∑ 𝜽𝟐  (𝑅𝑖𝑑𝑔𝑒 𝑜𝑢 𝐿2 𝑅é𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛) 

 

Le facteur de régularisation 𝝀 correspond au niveau de pénalité : s’il 

est trop grand, on risque l’Under fitting, et s’il est trop faible, c’est 

l’Over fitting. On peut le contrôler directement dans Sklearn. 

 

2. Pour le K-Nearest Neighbour, on peut augmenter la valeur de K 

(nombre de voisins). Le modèle ne tient alors pas compte des 

anomalies noyées dans la masse. 

3. Pour les Réseaux de Neurones, une technique nommée Dropout 

pénalise le modèle en désactivant aléatoirement certains neurones 

à chaque cycle de Gradient Descent. Le Réseau perd alors 

légèrement de ses facultés et est moins sensible aux détails. 

 

Voici ce que la Régression linéaire classique vous donnera en développant 

un modèle polynômial de degré 10 sur le Dataset suivant : 
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import numpy as np     
import matplotlib.pyplot as plt     
from sklearn.preprocessing import PolynomialFeatures   
from sklearn.linear_model import LinearRegression   
   
# Creation d'un Dataset x, y    
np.random.seed(0)   
x = np.linspace(0, 5, 10)   
y = x - 2 * (x ** 2) + 0.5 * (x ** 3) + np.random.normal(-2, 2, 10)   
plt.scatter(x, y)   
   
# Creation de plusieurs features pour notre modele   
X = x[:, np.newaxis]   
X = PolynomialFeatures(degree=10, include_bias=False).fit_transform(X)   
X.shape   
   
   
# Entraînement du modele. Ici on utilise les Equations Normales (LinearRegression) 
# Les Equations normales reposent sur la méthode des moindres carrées, c’est plus 
# rapide que le Gradient Descent. 
model = LinearRegression()   
model.fit(X,y)   
print('Coeff R2 =', model.score(X, y))   
plt.scatter(x, y, marker='o') 
plt.plot(x, model.predict(X), c='red')   

 

Dans Sklearn, vous pouvez développer un modèle avec régularisation 

grâce au modèle Ridge : Sklearn.linear_model.Ridge. Le modèle a 

certes un coefficient 𝑅2 plus faible, mais il produit une meilleure 

généralisation et fera donc moins d’erreurs sur les données futures. 

from sklearn.linear_model import Ridge   
   
ridge = Ridge(alpha=0.1) # alpha est le facteur de régularisation.     
ridge.fit(X,y)   
print('Coeff R2 =', ridge.score(X, y))   
   
plt.scatter(x, y, marker='o')   
plt.plot(x, ridge.predict(X), c = 'green')   
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Vous savez maintenant que la performance réelle d’un modèle de 

Machine Learning ne repose pas simplement sur sa Fonction Coût : vous 

risquez l’Over fitting chaque fois qu’un modèle se spécialise trop sur les 

données qu’on lui donne à étudier. 

Mais comment être sûr de la performance que votre modèle aura sur des 

données futures, c’est-à-dire des données sur lesquelles il n’aura pas 

été entraîné ? 

La réponse est dans la question ! Il faut entraîner votre modèle sur une 

partie seulement du Dataset et utiliser la seconde partie pour évaluer la 

vraie performance de notre modèle. On appelle cela le Train set et le Test 

set. 

 

Diagnostiquer un modèle de Machine Learning 

Train set et Test set 

La bonne manière de mesurer la performance de votre modèle de 

Machine Learning est de tester celui-ci sur des données qui n’ont pas 

servi à l’entraînement. On divise ainsi le Dataset aléatoirement en deux 

parties avec un rapport 80/20 : 

• Train set (80%), qui permet à la machine d’entraîner un 

modèle. 

• Test set (20%), qui permet d’évaluer la performance du 

modèle. 
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Pour créer un Train set et Test set à partir de notre Dataset, on utilise la 

fonction train_test_split de Sklearn : 

 

import numpy as np     
import matplotlib.pyplot as plt   
from sklearn.datasets import make_regression 
from sklearn.preprocessing import PolynomialFeatures     
from sklearn.model_selection import train_test_split   
   
# Creation d'un Dataset Aleatoire   
np.random.seed(0)   
x, y = make_regression(n_samples=100, n_features=1, noise=10) 
y = np.abs(y) + y + np.random.normal(-5, 5, 100)   
plt.scatter(x, y)   
   
# Creation des Train set et Test set a partir du Dataset   
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)   
   
# Visualisation des Train set et Test set   
plt.scatter(x_train, y_train, c='blue', label='Train set')   
plt.scatter(x_test, y_test, c='red', label='Test set')   
plt.legend()   

 

 

 

On peut ensuite entraîner notre modèle sur le 𝑻𝒓𝒂𝒊𝒏 𝑺𝒆𝒕: (𝒙𝒕𝒓𝒂𝒊𝒏, 𝒚𝒕𝒓𝒂𝒊𝒏), puis 

l’évaluer sur le 𝑻𝒆𝒔𝒕 𝑺𝒆𝒕: (𝒙𝒕𝒆𝒔𝒕, 𝒚𝒕𝒆𝒔𝒕) . 
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Dans le code ci-dessous je décide de mettre en pratique tout ce que nous 

avons vu : Je crée plusieurs features polynômiales (degré 10) et j’utilise 

la régularisation de Ridge pour éviter l’Over fitting. On obtient un score de 

92% pour l’entraînement et un score de 91% pour l’évaluation sur des 

données nouvelles. 

 

X = PolynomialFeatures(degree = 10, include_bias=False).fit_transform(x)   
   
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)   
   
from sklearn.linear_model import Ridge   
   
model = Ridge(alpha = 0.1, random_state=0)   
model.fit(x_train, y_train)   
   
print('Coefficient R2 sur Train set:', model.score(x_train, y_train))   
print('Coefficient R2 sur Test set:', model.score(x_test, y_test))   
   
plt.figure(figsize=(8,6))   
plt.scatter(x, y, c='blue')   
a = np.linspace(-2, 2, 100).reshape((100, 1))   
A = PolynomialFeatures(degree = 10, include_bias=False).fit_transform(a)   
plt.plot(a, model.predict(A), c = 'green', lw=2)  
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Repérer un problème d’Under fitting ou d’Over fitting 

La technique la plus efficace pour repérer si votre modèle a un problème 

de biais (Under fitting) ou de variance (Over fitting) consiste à analyser 

les erreurs (la Fonction Coût) sur le Train set 𝑱(𝜽)𝒕𝒓𝒂𝒊𝒏 et le Test set 

𝑱(𝜽)𝒕𝒆𝒔𝒕 : 

• Si les erreurs sont grandes sur le Train set et le Test 

Set, alors le modèle a un grand biais, et il faut développer 

un modèle plus complexe ou développer plus de features. 

• Si les erreurs sont faibles sur le Train set, mais sont 

grandes sur le Test set, alors le modèle a une grande 

variance. 

Nombre de paramètres

VarianceBiais

 

 

Que faire en cas d’Over fitting ou Under fitting ? 

Dans le cas où votre modèle a un grand biais (Under fitting) vous 

pouvez : 

• Créer un modèle plus complexe, avec plus de paramètres. 

• Créer plus de features à partir des features existantes. 

• Entraîner votre modèle plus longtemps. 

• Diminuer le Learning Rate du Gradient Descent (si le 

Learning Rate est trop grand, la Fonction Coût ne converge 

pas) 

• Récolter plus de features dans les données (parfois une 

feature importante n’a pas été récoltée) 
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A l’inverse, si votre modèle a une grande variance (Over fitting) vous 

pouvez : 

• Utiliser la régularisation 

• Utiliser un modèle avec moins de paramètres ou un 

Dataset avec moins de features 

• Collecter plus de données (avoir un Dataset plus grand 

permet de développer un modèle qui généralise mieux) 

 

Cycle de développement du Machine Learning 

Développer un modèle de Machine Learning ne se fait pas du premier 

coup. On commence souvent avec une première idée de modèle simple 

et rapide à développer, puis on analyse si on a une variance ou un biais 

et on tente une nouvelle idée pour corriger les problèmes rencontrés, 

etc. 

 

 

 

 

 

 

 

 

 

Le diagramme de la page suivante résume le cycle de développement du 

Machine Learning avec toutes les étapes que vous avez apprises, et 

marque la fin de ce chapitre final. 

 

Notre voyage s’achève ici, mais j’espère que vous continuerez à tracer 

votre chemin dans le  Machine Learning après avoir lu ce livre, et me 

soutenir sur machinelearnia.com et YouTube est le meilleur moyen de me 

remercier pour ce livre gratuit. 

N’omettez pas de lire la conclusion du livre, je garde pour vous un petit 

bonus ! 

Idée

CodeEvaluation

https://machinelearnia.com/
https://www.youtube.com/channel/UCmpptkXu8iIFe6kfDK5o7VQ
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Résumé des étapes de développement en Machine 

Learning 

 

Importer un 
Dataset (x, y)

Pre-process le 
Dataset

Diviser
Train Set

Validation Set

Entrainer un 
modèle

(Train Set)

Evaluer le Modèle
(Validation Set)

Under fitting 
(grand biais)

Over fitting 
(grande variance)

Modèle Plus 
complexe

Entrainement plus 
long

Learning rate plus 
petit

Modèle 
Moins complexe

Collecter plus de 
données

Régularisation

NOUVELLE IDÉE

IDÉE
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Bravo ! Vous avez lu ce livre en entier, ce qui vous distingue de la 

majorité des gens qui commencent un livre sans jamais le finir. Le simple 

fait de l’avoir terminé doit vous conforter dans l’idée que vous avez les 

capacités de devenir un excellent Data Scientist ! 

Le Monde, et tout particulièrement la France, manque cruellement de 

Data Scientists ! Il y a énormément de places à prendre sur le marché 

du travail, mais d’ici 5 ans cela aura certainement changé. 

Agissez donc MAINTENANT. Utilisez les techniques que vous avez 

apprises pour des tâches au travail et continuer d’apprendre grâce à mon 

site Internet : machinelearnia.com. Pour finir, je vous livre quelques 

conseils et un formulaire de Machine Learning.  

  

Guillaume Saint-Cirgue 

Du fond du cœur, MERCI. 
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Lexique : Formule Résumé du Machine 
Learning 

Différences entre Data Science, Machine Learning et 

Deep Learning 

L’Intelligence Artificielle est l’ensemble des techniques et théories qui 

cherchent à développer des modèles capables de simuler le 

comportement humain. 

Parmi ces techniques, on trouve le Machine 

Learning, très populaire depuis 2010. Le Deep 

Learning est un domaine du Machine Learning qui 

est focalisé sur le développement des réseaux de 

neurones et qui fait face à d’autres défis que ceux 

du machine Learning. Parmi ces défis, comment 

entrainer des modèles avec des millions de 

paramètres et des milliards de données dans des 

temps raisonnables. 

On dit souvent que ce sont des disciplines de Data Science parce qu’elles 

utilisent des données pour construire les modèles. Mais en Data Science, 

on analyse plus souvent des données pour en créer un modèle en réaction 

à ces données, alors qu’en Machine Learning on créé un programme qui 

acquiert une aptitude : conduire une voiture, voir des objets, etc. 

 

Dataset : 

Tableau de données (𝑿, 𝒚) qui contient 2 types de variables : 

- Target 𝒚 

- Features 𝑿 

On note 𝒎 le nombre d’exemples que contient le tableau (le nombre de 

lignes) et 𝒏 le nombre de features (le nombre de colonnes 𝑋). 

Ainsi : 

- 𝑿 est une matrice à 𝒎 lignes et 𝒏 colonnes. 𝑿 ∈ ℝ𝒎×𝒏 

- 𝒚 est un vecteur à 𝒎 lignes. 𝒚 ∈ ℝ𝒎 

Pour désigner la feature 𝒋 de l’exemple 𝒊 on écrit 𝒙𝒋
(𝒊)
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Modèle :  

Fonction mathématique qui associe 𝑿 à 𝒚, telle que 𝒇(𝑿)  =  𝒚. Un bon 

modèle doit être une bonne généralisation, c’est-à-dire qu’il doit fournir 

de petites erreurs entre 𝒇(𝒙) et 𝒚 sans être sujet à l’Over fitting. 

On note 𝜽 le vecteur qui contient les paramètres de notre modèle. Pour 

une régression linéaire, la formulation matricielle de notre modèle 

devient : 𝑭(𝑿) = 𝑿. 𝜽 

Fonction Coût :  

La Fonction Coût 𝑱(𝜽) mesure l’ensemble des erreurs entre le modèle et le 

Dataset. De nombreux métriques d’évaluations peuvent être utilisés 

pour la Fonction Coût : 

- Mean Absolute Error (MAE) 

- Mean Squared Error (MSE) : Utilisée dans le Chapitre 3 

- Root Mean Squared Error (RMSE) 

- Accuracy : pour les classifications 

- Precision  

- Recall 

- F1 score. 

 

Gradient de la Fonction Coût  
𝝏 𝑱(𝜽)

𝝏 𝜽
 

 

Gradient Descent : 

Algorithme de minimisation de la Fonction Coût. Il existe beaucoup de 

variante de cet algorithme : 

- Mini Batch Gradient Descent 

- Stochastic Gradient Descent 

- Momentum 

- RMSProp 

- Adam 
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Variance : 

C’est l’erreur due à un modèle trop sensible aux détails et incapable de 

généraliser, ce qui donne lieu à un Over fitting. 

 

Biais : 

C’est l’erreur due à un modèle erroné qui manque de précision et donne 

lieu à un Under fitting. 

 

 

Résumé de la Régression Linéaire 

𝑫𝒂𝒕𝒂𝒔𝒆𝒕: (𝑋, 𝑦) 𝑎𝑣𝑒𝑐 𝑋, 𝑦 ∈  ℝ𝑚×𝑛 

𝑴𝒐𝒅è𝒍𝒆: 𝐹(𝑋) = 𝑋. 𝜃 

𝑭𝒐𝒏𝒄𝒕𝒊𝒐𝒏 𝑪𝒐û𝒕: 𝐽(𝜃) =  
1

2𝑚
 ∑(𝐹(𝑋) − 𝑦 )2 

𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕: 
𝜕 𝐽(𝜃)

𝜕 𝜃
=  

1

𝑚
 𝑋𝑇 . ( 𝐹(𝑋) − 𝑦) 

𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕 𝑫𝒆𝒔𝒄𝒆𝒏𝒕: 𝜃 =  𝜃 −  𝛼 ×
𝜕 𝐽(𝜃)

𝜕 𝜃
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Résumé de la Régression Logistique 

𝑴𝒐𝒅è𝒍𝒆: 𝜎(𝑋. 𝜃)  =  
1

1 + 𝑒−𝑋.𝜃
 

𝑭𝒐𝒏𝒄𝒕𝒊𝒐𝒏 𝑪𝒐û𝒕: 𝐽(𝜃) =  
− 1

𝑚
 ∑ 𝑦 × log( 𝜎(𝑋. 𝜃)) + (1 − 𝑦) × log(1 −  𝜎(𝑋. 𝜃)) 

𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕: 
𝜕 𝐽(𝜃)

𝜕 𝜃
=  

1

𝑚
 𝑋𝑇 . ( 𝜎(𝑋. 𝜃) − 𝑦) 

𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕 𝑫𝒆𝒔𝒄𝒆𝒏𝒕: 𝜃 =  𝜃 −  𝛼 ×
𝜕 𝐽(𝜃)

𝜕 𝜃
 

 

 

Code pour visualiser les courbes d’apprentissage sur 

une régression linéaire (Chapitre 3) 

 

Copier/coller le code suivant dans Jupyter ou bien Spyder pour visualiser 

les courbes d’apprentissage. 

Importer les libraires : 

import numpy as np   
import matplotlib.pyplot as plt   
from sklearn.datasets import make_regression   
 

 

Générer un Dataset aléatoire  

np.random.seed(4)   
n = 1   
m = 100   
   
x, y = make_regression(n_samples=m, n_features=n, noise=10)   
y = y + 100   
plt.scatter(x, y)   
y = y.reshape(y.shape[0], 1)   
   
#ajouter le Bias a X   
X = np.hstack((np.ones(x.shape), x))   
X.shape   
 

 

Définir sous forme matricielle le modèle, la Fonction Coût et le gradient. 

On définit 𝜽 le vecteur qui contient les paramètres 𝒂 et 𝒃. 

𝑭 = 𝑿. 𝜽 
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𝑱(𝜽) =  
𝟏

𝟐𝒎
∑(𝑿. 𝜽 − 𝒚 )𝟐 

𝑮𝒓𝒂𝒅(𝜽) =  
𝟏

𝒎
𝑿𝑻. (𝑿. 𝜽 − 𝒚) 

#definir la fonction modele   
def model(X, theta):   
    # x shape: (m, n)   
    # theta shape: (n,1)   
    return X.dot(theta) #shape: (m, 1)   
   
#definir la fonction cout   
def cost_function(X, y, theta):   
    m = len(y)   
    J = 1/(2*m) * np.sum((model(X, theta) - y)**2)   
    return J   
   
#definit la fonction gradient   
def gradient(X, y, theta):   
    return 1/m * X.T.dot((X.dot(theta) - y))   
   

  

On définit la fonction Gradient Descent avec une boucle for : 

For all itérations : 

𝜽 = 𝜽 − ∝  𝑮𝒓𝒂𝒅(𝜽) 

 

#algorithme de Gradient Descent   
def gradient_descent(X, y, theta, learning_rate =0.001, iterations = 1000):   
    m = len(y)   
    cost_history = np.zeros(iterations)   
    theta_history = np.zeros((iterations, 2))   
       
    for i in range(0, iterations):   
        prediction = model(X, theta)   
        theta = theta - learning_rate * gradient(X, y, theta)   
        cost_history[i] = cost_function(X, y, theta)   
        theta_history[i,:] = theta.T   
       
    return theta, cost_history, theta_history   
   

   

On passe à l’entraînement du modèle, puis on visualise les résultats. 

# utilisation de l'algorithme   
   
np.random.seed(0)   
theta = np.random.randn(2, 1)   
   
iterations = 10   
learning_rate = 0.3   
theta, cost_history, theta_history = gradient_descent(X, y, theta, learning_rate=learni
ng_rate, iterations = iterations)   
   
   
#visualisation des courbes d'apprentissage   
fig,ax = plt.subplots(figsize=(12,8))   
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ax.set_ylabel('J(Theta)')   
ax.set_xlabel('Iterations')   
_=ax.plot(range(iterations),cost_history)   
   
# visualisation du modele au cours de son apprentissage   
fig,ax = plt.subplots(figsize=(12,8))   
_=ax.plot(x, y, 'b.')   
for i in range(iterations):   
    _=ax.plot(x, model(X, theta_history[i]), lw=1)   

 

 

Autres Algorithmes de Machine Learning: 

Pour votre culture, voici d’autres algorithme de Machine Learning très 

populaires. Vous pouvez les apprendre en détail sur machinelearnia.com. 

- Support Vector Machine : Consiste à trouver la frontière de 

décision linéaire qui éloigne le plus les classes l’unes de l’autres. Il 

est facile de créer des modèles aux dimensions infinies avec cette 

méthode. 

 

- Decision Tree : Consiste à ordonner une série de tests dans un 

arbre pour arriver à une conclusion. 

 

- Random Forest : Un ensemble de Decision Tree construits 

aléatoirement (avec Bootstrap) qui chacun émet sa solution au 

problème. La solution majoritairement choisie par la forêt l’emporte. 

 

- Naive Bayes : Repose sur l’inférence de Bayes (probabilités 

conditionnelles) 

 

- Anomaly Detection Systems : Algorithme de Unsupervised 

Learning qui consiste à détecter des anomalies grâce aux densités 

de probabilités. 

 

- Principal Component Analysis : Technique de réduction de 

dimension qui consiste à réduire le nombre de variables de votre 

Dataset en créant des variables non-corrélées. 

https://machinelearnia.com/


Lexique : Formule Résumé du Machine Learning 

100 
Tous droits réservés © 2019 Guillaume Saint-Cirgue 

machinelearnia.com 

Mes 3 conseils perso pour le Machine Learning 

Conseil #1 : Notez toujours les dimensions de votre problème 

100% des Data Scientists ont déjà fait cette erreur : ne pas noter sur 

une feuille de papier les dimensions des matrices du problème. 

A un moment ou un autre, vous aurez un bug parce que vous tentez de 

multiplier deux matrices A et B aux dimensions incompatibles. Il est alors 

très utile de vérifier les dimensions des matrices du Dataset, Train set, 

Test set, et des paramètres en utilisant la fonction numpy.shape pour les 

comparer à vos calculs. 

 

 

Conseil #2 : Loi de Pareto 

Vous connaissez la Loi de Pareto ? 80% des effets sont le produit de 

20% des causes. 

J’ai pu observer que ce principe s’applique très souvent en Machine 

Learning : 80% des erreurs de votre modèle sont produites par 20% des 

prédictions, ou bien 20% des points du Dataset, ou bien 20% des hyper-

paramètres, etc. De la même manière, 80% de la performance de votre 

programme est atteinte après seulement 20% de travail. 

Faites alors le diagnostic de votre système en cherchant les points 80/20 

Si vous voulez vous améliorer de 80% en produisant seulement 20% 

d’efforts. Bonne chance ! 

 

Conseil #3 : Philosophez et ne soyez pas obsédés par la 

performance 

En Machine Learning, il est important de savoir prendre du recul. Selon 

l’application, une précision de 98% est aussi bien qu’une précision de 

98,1%. Pourtant, beaucoup de Data Scientists peuvent perdre des 

semaines à gagner ce petit 0,1%... pour pas grand-chose. Je vous invite 

à philosopher, à garder l’esprit ouvert et à passer plus de temps à 

chercher des solutions à d’autres problèmes. 

Bonne chance à vous ! 


