Decisonensemble

February 20, 2025

[25]: # load libraries
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets

#load data

iris = datasets.load_iris()
features = iris.data
target = iris.target

Tree decision classifier
decisiontree = DecisionTreeClassifier(random_state=0)

train the model
model = decisiontree.fit(features, target)

create a new observation
observation = [[5, 4, 3, 2]]

Prediction
model .predict (observation)

[25]: array([1])

[27]: # Print probabilities for the three classes
model.predict_proba(observation)

[27]: array([[0., 1., 0.11)

[29]: # load libraries
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets#load data

#load data

iris = datasets.load_iris()
features = iris.data
target = iris.target

Impurity measurment entropy
decisiontree_entropy = DecisionTreeClassifier(criterion='entropy',,
—random_state=0)

train the model
model_entropy = decisiontree_entropy.fit(features, target)

create a mew observation
observation = [[5, 4, 3, 2]]

Prediction
model .predict (observation)

[29]: array([1])

[31]: # Dectsion tree as a regressor
#load librartes
from sklearn.tree import DecisionTreeRegressor
from sklearn import datasets

#load a dataset with 2 features
diabetes = datasets.load_diabetes()
features = diabetes.data

target = diabetes.target

Create a regressor
decisiontree = DecisionTreeRegressor (random_state=0)

Learn model
model = decisiontree.fit(features, target)

create observation
observation = [features[0]]

Prediction
model.predict (observation)

[31]: array([151.1)

[43]: # Dectision tree as a regressor with mean absolute error
#load libraries
from sklearn.tree import DecisionTreeRegressor
from sklearn import datasets

#load a dataset with 2 features
diabetes = datasets.load_diabetes()

[43]:

[477:

[49]:

features = diabetes.data
target = diabetes.target

Create a tree regressor using Mean absolute error
decisiontree_mae = DecisionTreeRegressor(criterion='absolute_error',
< random_state=0)

Learn model
model_mae = decisiontree_mae.fit(features, target)

create observation
observation = [features[0]]

Prediction
model.predict (observation)

array([151.])

Random forest

Load libraries

from sklearn.ensemble import RandomForestClassifier
from sklearn import datasets

Load data

iris = datasets.load_iris()
features = iris.data
target = iris.target

Create forest fires

randomforest = RandomForestClassifier(random_state=0, n_jobs=-1)

amportant paprameter rendom forest are

maz_features : fix max number of features taking into constderation in eachy
—node , default number is the total number of features

bootstrap :refer to a sampling technique used to create multiple training,
—~datasets from the original dataset.

#This process ts called Bootstrap Aggregation (or Bagging), and it helps improve,
—model accuracy and reduce overfitting.

n_estimators : Fixz the number of decision tree , default value 7s 10

#train model
model = randomforest.fit(features, target)

Evaluate random forest with out of bag error
#Load libraries

from sklearn.ensemble import RandomForestClassifier

[49]:

[50]:

from sklearn import datasets

Load data

iris = datasets.load_iris()
feautures = iris.data
target = iris.target

Create forest fires

randomforest = RandomForestClassifier(random_state=0, n_estimators=1000,

—oob_score=True, n_jobs=-1)
#train model
model = randomforest.fit(features, target)

#Print error out of the bag
randomforest.oob_score_

0.9533333333333334

#Load libraries

import numpy as np

import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier
from sklearn import datasets

Load data

iris = datasets.load_iris()
feautures = iris.data
target = iris.target

Create forest fires

randomforest = RandomForestClassifier(random_state=0, n_jobs=-1)
#train model

model = randomforest.fit(features, target)

amportant caracteristic
importances = model.feature_importances_

order the importance

indices = np.argsort(importances) [::-1]
#rerganize the features mame

names = [iris.feature_names[i] for i in indices]

Create bar plot

plt.figure(figsize=(8, 5))

plt.bar (range (features.shape[1]), importances, tick_label=names)
—~tick labels

Corrected,,

[53]:

[63]:

[59]:

plt.xticks(rotation=90) # Rotate feature names for readability
plt.ylabel("Importance Score")

plt.title("Feature Importance in Model")

plt.show()

Feature Importance in Model

Importance Score

£ £ E £
v}]] =}
il L= S S
5 5 = 5
2 : 2 £
L = w =
= © - o
1] i m

g g 2 g
o o u v

importance of features
model . feature_importances_

array([0.09090795, 0.02453104, 0.46044474, 0.42411627])

#Random forest regressor
#Load libraries

from sklearn.ensemble import RandomForestRegressor
from sklearn import datasets

#load a dataset with 2 features
diabetes = datasets.load_diabetes()
features = diabetes.data

target = diabetes.target

#Regressor
randomforest = RandomForestRegressor(random_state=0, n_jobs=-1)

#train a model
model = randomforest.fit(features, target)

[67]: # <improve performances based on boosting
#Load libraries
from sklearn.ensemble import AdaBoostClassifier
from sklearn import datasets

#Load data

iris = datasets.load_iris()
features = iris.data
target = iris.target

Create classtifier
adaboost = AdaBoostClassifier (random_state=0)

#train
model = adaboost.fit(features, target)

C:\Users\Thinkpad\anaconda3\Lib\site-
packages\sklearn\ensemble_weight_boosting.py:519: FutureWarning: The SAMME.R
algorithm (the default) is deprecated and will be removed in 1.6. Use the SAMME
algorithm to circumvent this warning.

warnings.warn(

[1: # XGboost
#Load data
import xgboost as xgb
from sklearn import datasets, preprocessing
from sklearn.metrics import classification_report
from numpy import argmax

#Load data

iris = datasets.load_iris()
features = iris.data
target = iris.target

#create data
xgb_train = xgb.DMatrix(features, label=target)

#define parameters
param = {
'objective':'multi:softprob’,

[]:

'num_class' : 3

3

#train
gbm = xgb.train(param, xgb_train)

Prediction
predictions = argmax(gbm.predict(gbm.predict(xgb_train)), axis=1)

print(classification_report(target, predictions))

