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3.4 Trace of matrix

Definition 3.4.1. The sum of the diagonal elements of a square matrixz A is called the trace of

A, denoted by Tr(A).
4 -1 3
Example 3.4.2. Let A=17 1 2 |, its trace is Tr(A) = —2.
9 0 -7
Theorem 3.4.3. Let A and B be two matrices of order n, then
1. Tr(A+ B)=Tr(A) + Tr(B).
2. VaeF, Tr(a.A)=aTr(A).

3. Tr(tA) = Tr(A).

4. Tr(AB) = Tr(BA).

3.5 Determinants

3.5.1 Determine of 2 x 2 and 3 x 3 matrices

a1l G12
1. Given 2 x 2 matrix A =

a1 G22
We define the determinant of A as:

aii a2 air a2
det(A) = det = = @11022 — (12021

a1 a22 a1  G22

Example 3.5.1. Compute determinant of A such that

2 -1
A= , det(A) =2(3) —7(—1) = 13.
7T 3
ajl a2 a3
2. Given 3 x 3 matrix A = | a9; a9 a3

azr as2 a3z
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We define the determinant of A as:

an aiz a3 ain a2 a3
azy ass ag ass ag  az
det(A) =det [ ap; aze ags | = |az a2 ax|=an —a12 +ai13
asz  ass as  ass as  asz
as1 asz ass as1 asy ass

Example 3.5.2. Compute determinant of A such that
1 0 0

A=|2 3 1|, det(A)=1(3x1)—(—4x1))=T.
1 -4 1

Definition 3.5.3. Let A be a 3x3 matriz, let (a;,) be 2x2 matriz obtained from A by deleting the

3" row and k' column. Defining the co-factor of a;i to be the number Cjj, = (—1)j+kdet(ajk).

Define the determinant to be
det(A) = a11C11 + a12C12 + a13C13.
This definition is called the expansion of the determinant along the 15 row.

Remark 3.5.4. A helpful way to remember the sign of a co-factor is to use the matrix

Example 3.5.5. Compute the determinant of A, where
4 =2
A=1|2

S ot W

3
1 0

det(A) = a11C11 + CL12012 + a13013 =T7.

3.5.2 Determine of n X n matrices

We define the determinant of a general n x n matrix as follows.
Let A be a n x n matrix, let (a;;) be the (n — 1) x (n — 1) matrix obtained from A by deleting
the j row and k™ column, and let Cj; = (—1)7**det(a;x) be the (j, k)-cofactor of A. The

determinant of A is defined to be:

det(A) = a11C11 + a12C12 + ... + a1,C1p.-
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Theorem 3.5.6. Let A be a n xn matriz, then det(A) may be obtained by a cofactor expansion

along any row or column of A:
det(A) = aﬂC'ﬂ -+ anCjz + ..+ aan’jn.
Corollary 3.5.7. If A has a row or column containing all zeroes then det(A) = 0.

Corollary 3.5.8. For any square matriz A, it holds that det(A) = det('A).

Proof : Expanding along j™* row of A is equivalent to expanding along j*" column of tA. O

Example 3.5.9. Compute the det of A:

4 0 3 -1
2 35 0
A=
1 06 1
102 0
Ezpanding along the second column, we find
4 3 -1
det(A)=3det |1 6 1 | =-3

1 2 0

Corollary 3.5.10. If A has two rows (or two columns) that are equal, then det(A) = 0.
Theorem 3.5.11. Let A, B € M, (R), then det(AB) = det(A)det(B).

Corollary 3.5.12. For any square matriz det(A*) = (det(A))*.

Theorem 3.5.13. Let A € M, (F), B = SA that is B is obtained by multiplying every entry of

A by B, then det(B) = p"det(A).

3.5.3 The Cofactor matrix

Recall that det(A) = a;j1Cj1 + aj2Cj2 + ... + aj,Cjn, Where Cj, = (—1)7"*det(azx) is called
the (7, k)-cofactor of A, and

aj = [aﬂ a2 ... ajn]
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is the 5 row of A. If Cj = [Cj1 Cjs ... Cjp] then

det(A) = [aﬂ a2 ... aj"] . = ajC"Li.

[Cijn.
On the other hand, if j # k then

det(A)a if j=k,
0, ifj#k

. t —
a;Ct =

From the co-factor matrix, we can write A(m)(co f(A))! = I,. Hence, we deduce A~! =

det;(A)tco f(A).

The co-factor method is an alternative method to find the inverse of an invertible matrix. Recall
that for any matrix A € R"*", if we expand along the j** row.

Suppose that B is the matrix obtained from A by replacing row a;; with a distinct row aj. To

compute det(B) expand along the j* row, b; = ax, det(B) = aC} = 0.
Theorem 3.5.14. The determinant of triangular matriz is the product of its diagonal entries.

Theorem 3.5.15. Suppose that A € My, »(R) and let B be the matrix obtained by interchanging
two rows of A. Then, det(B) = —det(A).

3.6 Invertibility of matrices

Theorem 3.6.1. A square matriz A is invertible if and only if det(A) # 0.

Corollary 3.6.2. Let A be an invertible matriz, then det(A™') = #(A)’

Proof : Wehave AA™! = A1 A = [, then det(AA~!) = det(I,,). Which implies det(A)det(A™1) =

det(In) = 1. Hence, det(A™") = detl(A)' O
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3.6.1 The cofactor method
Define the cofactor matrix as follows

Ci1 ... Cin
Cof(A) =
Cp1i ... Cun

We have A.Cof(A)t = det(A).I,, this leads to the following formula for the inverse

L1

= Cof(A)L.
det () O A
. . ailr a2 . .
The inverse of 2 x 2 matrix, A = . with aj1a20 — ajoa21 # 0, the cofactor matrix of
a21 a2
A is given by
a —a
Cof(A) = 22 21
—ai2 a1l
a2 —aq2
-1 _ _ 1 _ 1
Hence, A~ = 2 Cof(A) = T
—az1r a1

Exercise 3.6.3. Compute the inverse of the following invertible matrix

1 2 3
A=|-1 0 1
4 2 1

3.6.2 Gauss Jordan method

To find the inverse of a matrix using the Gauss-Jordan method, we start by augmenting the
matrix with the identity matrix, then perform row operations to transform the original matrix

to the identity matrix.

Example 3.6.4. Compute the inverse of the matrix A, where
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We have AA™! = I3. Let

L -3 2 210

o
|
w
N
)

1 00

Lo—Lo+2L
2] 6 —6 4|0 1 0 [ = 0 2 8l2 1 0
L3 3 —4 7|10 0 1 3 —4 7|0 0 1
-3 2 —-1|1 0 O -3 2 2|1 0 O
Ly—Ls+L1 L3—L3z—Lo
—_— 0O -2 812 1 0 —_— 0 -2 8| 2 1 0
0O -2 91 01 O o0 1|{-1 -1 1
-3 0 103 1 O -3 0 0]13 11 -10
Li—Lyi+Lo O _9 8 9 1 0 L1—L1—10L3ALo—Lo—8L3g 0 _9 O 10 9 _8
0 0 1|-1 -1 1 0 0o 1|-1 -1 1
Therefore,
~13 —11 10
L0 0|=5 =5 3
-10 -9 8
01 0] %5 3
00 1|]-1 -1 1
Hence,
—13 -1 10
3 3 3
-1 —-10 -9 8
A7 = )
-1 -1 1

3.7 Rank of a matrix

Definition 3.7.1. The rank of a matriz A is the dimension of the vector subspace generated
(spanned) by its columns. This correspond to the maximal number of linearly independents

columns of A. This in turn, is identical to the dimension of the vector subspace spanned by its

rows.

Example 3.7.2. The matriz
1 01
A=1|[1 3 4
3 4 7

has rank 2, since {vi,v2.,} are linearly dependents. However, {vi,vs} are linearly independents.
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3.8 Properties of inverse matrix

1. Let A be an invertible matrix, then (A=1)~! = A.

2. Let A and B be invertible matrices, the (AB)~! = B~1A~!. More general, if A;, Ay..., A,

are invertible matrices, then
(A1 As. Ayt =A AT AT AT
3. If det(A) = 0, then A is called a singular matrix.

4. If a non-singular square matrix A is symmetric, then A~! is also symmetric.

5. If A be an invertible matrix, then AA™1 = A=1A = 1.

3.9 Matrix of a linear mapping

3.9.1 Matrix representation of a linear mapping

Let f: E — F be a linear mapping, with £ and I are finite dimensional vector spaces over
a field F, with dimensions n and m respectively. Let B = {ej,e2,...,e,} be a basis for E, and
B' = {¢€],é,,...,el,} be a basis for F.
Definition 3.9.1. Since B’ = {€}, €}, ...,el, } is a basis for F, then there exists unique scalars
a;j € F such that
fle;) = ayjel + ... + anjel,, for 1 <j<n.

We can collect these scalars in an n x m matriz as follows:

ail e A1n
M(f) =
Aml .. Qmn

Remark 3.9.2. Note that M(f) depends on the linear mapping and the choice of bases.
Examples 3.9.3. 1. Let f : R?2 — R? be a linear mapping such that f(z,y) = (x+1y,2z —vy),

with respect to the canonical basis of R?, B = {e1(1,0),e2(0,1)}, we get
f(1,0) = (1,2) and f(0,1) = (1,—1). Then, the corresponding matriz is



42 CHAPTER 3. MATRICES

2. Let f:R* = R? be a linear mapping such that f(z,y,z,1) = 22 -3y +z,2 —y+ 2z — 2t),
let B = {e1(1,0,0,0),e2(0,1,0,0),e3(0,0,1,0),e4(0,0,0,1)} be the canonical basis of R?,

we have

fler) =(2,1), fle2) = (=3,-1), f(es) = (1,1), and f(es) = (0,—2).

Therefore, the corresponding matriz is

Proposition 3.9.4. Let E and F are finite dimensional vector spaces over a field F, with
dimensions n and m respectively, let {e;}1<i<n, and {u;}i1<j<m bases of E and F' respectively.
Then, the application T : L(E,F) — My, o(F) is an isomorphism of vector spaces. Which
means, M(f +g) = M(f)+ M(g), M(\f) = AM(f), where A € F,.

Proposition 3.9.5. Let E, F and G are finite dimensional vector spaces over a field F, with
dimensions n, m and k respectively, let {e;}1<i<n, {ujt1<j<m and {vi}1<i<i bases of E, F and

G respectively. Let f € L(E,F) and g € L(F,G), then we have M(go f) = M(g) x M(f).

Proposition 3.9.6. Let ' and F be two vector spaces over a field F with same dimension n.
Let {e;}1<i<n, and {u;}1<j<n bases of E and F respectively. A linear application f € L(E,F)
is bijective if and only if M(f) is invertible. Moreover, M(f~1) = (M(f))~*.

3.9.2 Transition matrix

Let E be a vector-space of dimension n, and {ej,...,e,} and {€],..., e}, } two bases of E.

Definition 3.9.7. We call transition matriz from basis {e1, ..., en} to the basis {€},... e}, the
matriz noted P{el,...,en}—>{e’1,...,e;,}7 where the columns are the coordinates of vectors {€},..., e}
in the basis {e1,...,en}.

The matriz P, .. c,}—s{c,,...c,} S the matriz of the identity Idg in the basis {€;}1<i<n and

{eiti<i<n-
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Proposition 3.9.8. The transition matric P, . c.}—s{e!,. .} is invertible and ils inverse is

the transition matric P{eﬁ,...,e%}—){el,...,en}'

Let x € E of coordinates (x1,x2, ..., Ty,) in the basis {e1, . .., ey} and of coordinates (2, 2%, ..., )
- . / /
in the basis {€},...,en}.
/
X1 Xy
. . , T2 R
We note P the transition matriz from {e;}1<i<n to {€}}1<i<n and X = , X = , we
/
T x,

have then X' = P71X.
Examples 3.9.9. Let B={(1,1,1),(1,—1,1),(0,0,1)} and B' = {(2,2,0),(0,1,1), (1,0,1)}.
1. Find the transition matriz from B to B’.

2. Find the transition matriz from B’ to B.

3.9.3 Change of basis

Proposition 3.9.10. Let f € L(E,F), and let {ey,... e} and {€},... e} two bases of E,
and {uy,...,up} and {uy,...,u,} two bases of F. We note A = M(f)e;u;; B = M(f)er
P = P{e1,‘..,en}—>{e’1,..‘,eg} and @ = P{ul,..‘,up}—>{u’1,...,u;}- Then, we have B = Q_lAP.

Corollary 3.9.11. Let f € L(E,E), and let {e1,...,e,} and {€],..., e} two bases of E, note
A= M(f)e“ui, B = M(f)e;,u’ and P = P{61,~--76n}—>{€'1 e} Then, B = P lAP.

F e L3 PIPRPICE O o gt U S RPERIY

Definition 3.9.12. Two matrices A and B are called similar, if there is an invertible matriz

P such that A= P~'BP.

Proposition 3.9.13. Two matrices that represents the same linear application in different basis
has the same rank.

In particular, two similar matrices has the same rank.



