University of science and technology Oran M-B Department of Mathematics Faculty of mathematics and computer science The 16^{th} May, 2024

Final exam of Algebra 2 (Duration 1h30)

Exercice 01:(08 points)

- **I.** Let *E* and *F* be two \mathbb{F} vector spaces, and *f* is a linear application from *E* to *F*.
 - 1. State the definition of the kernel and the image of f (kerf and Imf).
 - 2. Give the definition of direct sum of two subspaces of an F-vector space.
- **II.** Let the following two sets

$$E_1 = \{(x, y, z) \in \mathbb{R}^3, x + y = z\} \text{ and } E_2 = \{(x, y, z) \in \mathbb{R}^3, x - y + 2z = 0 \land 2x + y + z = 0\}.$$

- 1. Prove that E_1 and E_2 are subspaces of \mathbb{R}^3 .
- 2. Determine a basis for E_1 and a basis for E_2 , then deduce their dimensions.
- 3. Prove that $\mathbb{R}^3 = E_1 \oplus E_2$.

Exercice 02:(08 points) Consider the following linear application f defined by

- $$\begin{split} f: \mathbb{R}^3 \to \mathbb{R}^3 \\ (x,y,z) \mapsto & (2x+y, -3x-y+z, x-z) \end{split}$$
- 1. Write the matrix M associated to f in the canonical basis $B_0 = \{e_1(1,0,0), e_2(0,1,0), e_3(0,0,1)\}$ of \mathbb{R}^3 .
- 2. Determine Kerf, then deduce the rank of the matrix M.
- 3. Is f an automorphism of \mathbb{R}^3 ? Justify your answer.
- 4. Let $u_1 = (1, -2, 1)$, $u_2 = (0, -1, 1)$ and $u_3 = (0, 0, 1)$.
 - (a) Prove that $B_1 = \{u_1, u_2, u_3\}$ is a basis of \mathbb{R}^3 .
 - (b) The transition matrix P from the basis B_0 to the basis B_1 is given by $P = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$. Compute
 - P^2 , then deduce the matrix P^{-1} .
 - (c) Write the matrix M' associated to f in the basis B_1 .
 - (d) Compute M^3 , then prove that $M'^3 = O_{\mathcal{M}_3(\mathbb{R})}$, where $O_{\mathcal{M}_3(\mathbb{R})}$ is the null matrix.

Exercice 03:(04 points) Let the matrix

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}.$$

- 1. Compute A^2 .
- 2. Prove that $A^2 = 2A + I_2$.
- 3. Deduce that A is invertible, and give its inverse A^{-1} .
- 4. Solve the system AX = B of unknown $X \in \mathbb{R}^2$, for $B = (2,1)^t$ and for $B = (1,3)^t$.

Note: Exercise 2 will be counted as a replacement test for justified absences from tests 1 and 2. Good luck