Department of Mathematics

Faculty of mathematics and computer science The 10^{th} June, 2024

Makeup exam of Algebra 1 (Duration 1h30)

Exercice 01:(05 points)

Let P, Q and R be three propositions:

- 1. Write the truth table of each of the following propositions
 - $A \equiv P \lor (Q \land \overline{R}).$
 - $B \equiv (P \land \overline{Q}) \Rightarrow \overline{R}.$
- 2. Give the negation of the proposition A, and of B.
- 3. Using the contrapositive, show that

 n^3 is a multiple of $3 \Rightarrow n$ is a multiple of 3.

Exercice 02:(07 points)

Let f be an application from \mathbb{R} to \mathbb{R} defined by $f(x) = \frac{x}{1+|x|}$.

- 1. Prove that $f(\mathbb{R}) \subset]-1, 1[$. Is f onto? Justify.
- 2. Prove that f is one to one.
- 3. Determine $f^{-1}(\{\frac{1}{2}\})$.
- 4. Prove that f is bijective from \mathbb{R} to]-1,1[, and determine its reciprocal application f^{-1} .

Exercice 03:(08 points) Define on \mathbb{R} the binary operation * by

$$\forall x, y \in \mathbb{R}, \ x * y = x + y + \frac{1}{10}.$$

1. Show that $(\mathbb{R}, *)$ is an abelian group.

2. Let

$$f:(\mathbb{R},*) \to (\mathbb{R},+)$$
$$x \longmapsto 5x + \frac{1}{2}.$$

Show that f is a group homomorphism.

3. Let $H = \{\frac{2n-1}{10}, n \in \mathbb{Z}\}$. Show that H is a subgroup of $(\mathbb{R}, *)$.

Good luck