University of science and technology Oran M-B

Department of Mathematics

Faculty of mathematics and computer science The 16^{th} January, 2025

Final exam of Algebra I (Duration 1h30)

Exercice 01:(05 points)

Let E be a set and A, B, C be three elements of $\mathcal{P}(E)$.

- 1. Prove that, if $A \cap B = A \cup B$, then A = B.
- 2. Does $(C \subset A \cup B)$ imply $(C \subset A \text{ or } C \subset B)$? Justify.

Exercice 02:(08 points)

Let f be an application from \mathbb{R} to \mathbb{R} defined by:

$$f(x) = x^3 - x^2 - 9x + 9.$$

- (I) Let the sets $S_1 = \{-3, 0, 1, 3\}$ and $S_2 = \{9\}$.
 - 1. Determine $f(S_1)$. Deduce that f is not injective, justify.
 - 2. Compute $f^{-1}(S_2)$.
- (II) We define on \mathbb{R} the relation \mathcal{R} by:

$$\forall x, y \in \mathbb{R}, \ x\mathcal{R}y \Leftrightarrow f(x) = f(y).$$

- 1. Prove that \mathcal{R} is an equivalence relation on \mathbb{R} .
- 2. Discuss, based on the values of a, the number of elements in the equivalence class of a. Does Cl(3) = Cl(-3)?

Exercice 03:(07 points)

(I) Let α be a non-zero real parameter, we define on $\mathbb{R} - \{\alpha\}$ the binary operation * by:

$$\forall x, y \in \mathbb{R} - \{\alpha\}, x * y = x + y - \frac{1}{\alpha}xy.$$

- 1. Prove that $\mathbb{R} \{\alpha\}$ is an abelian group.
- 2. Let f be an application from $\mathbb{R} \{\alpha\}$ to $(\mathbb{R} \{0\})$ defined by:

$$f(x) = -\frac{1}{\alpha}x + 1$$

Prove that f is a group homomorphism from $(\mathbb{R} - \{\alpha\}, *)$ to $(\mathbb{R} - \{0\}, \bullet)$ (Where \bullet is the usual binary operation).

(II) (Course Questions)

Let H and K be two subgroups of a group (G, *), where * is a binary operation on G:

- 1. Prove that $H \cap K$ is a subgroup of (G, *).
- 2. Is $H \cup K$ a subgroup of (G, *), justify.