= Chargement de données (CSV, Excel, JSON)
import pandas as pd

df_csv = pd.read_csv('data.csv’)
df_excel = pd.read_excel('data.xlsx’)

df_json = pd.read_json('data.json’)

= Apergu général du DataFrame

df.head() # 5 premiéres lignes

df.tail() # 5 derniéres lignes
df.sample(3) # 3 lignes aléatoires

df.shape # dimensions (lignes, colonnes)
df.columns # noms des colonnes

df.dtypes # types de chaque colonne
df.info() # résumé complet

= Statistiques de base

df.describe() # résumé statistique numérique
df{'colonne'].value_counts() # fréquence des valeurs
df{'colonne'].nunique() # nombre de valeurs uniques

= Configuration d’affichage
pd.set_option('display.max_columns’', None) # afficher toutes les colonnes
pd.set_option('display.precision’, 2) # nombre de décimales

= Sélection de colonnes / lignes

df['marque’] # une seule colonne
df{['marque’, 'prix']] # plusieurs colonnes
df.iloc[0] # premiére ligne
df.iloc[0:5] #lignesDad
df.loc[df['prix'] > 10000] # filtrage conditionnel

= (Création et suppression de colonnes
df['prix_par_kg'] = df['prix'] / df['poids']
df.drop('ancien_colonne', axis=1, inplace=True)

= Trides valeurs
df.sort_values(by="prix', ascending=False)

o & Atelier:

e Charger un fichier CSV contenant des informations sur des véhicules
e Afficher les colonnes, types, et dimensions

e Compter les valeurs uniques dans une colonne (ex. carburant)

e Créer une colonne calculée (prix par kg)

e Trier les voitures par prix décroissant et extraire les 10 premiéres

Prétraitement et nettoyage des données :

= Détection des valeurs manquantes
e Localisation des 17217 par colonne ou ligne

df.isnull().sum()
df[df.isnull().any(axis=1)]

* Traitement des valeurs manquantes
- Remplissage (imputation) par moyenne, médiane, constante, ou méthode avancée :
df['age’] = df['age'].filina(df{'age'].mean())

df['sexe'] = df['sexe'].fillna('Inconnu')

df = df.ffill() # forward fill
df = df.bfill() # backward fill

- Imputation avec Simplelmputer (Scikit-learn)
from sklearn.impute import Simplelmputer

imputer = Simplelmputer(strategy="median’)
df[['revenu’]] = imputer.fit_transform(df[['revenu']])

= Détection des valeurs aberrantes (outliers)

- Méthode de I"écart interquartile (IQR)

Q1 = df['prix'].quantile(0.25)

Q3 = df['prix'].quantile(0.75)

IQR=Q3-Q1

outliers = df[(df['prix'] < Q1 - 1.5 * IQR) | (df['prix'] > Q3 + 1.5 * IQR)]

- Filtrage par z-score

from scipy.stats import zscore
df['zscore'] = zscore(df['prix'])
df[df['zscore’].abs() > 3]

® Suppression des doublons
- Recherche et élimination des lignes répétées

df.duplicated().sum()
df.drop_duplicates(inplace=True)

= Nettoyage des chaines de caractéres
df['ville'] = df['ville'].str.strip().str.lower().str.replace(’-', ' ')
dff'ville'] = df['ville'].str.normalize('NFKD')

= Uniformisation des types de données
df['date'] = pd.to_datetime(df['date’])
df['prix'] = df['prix'].astype(float)

= (Création de colonnes dérivées

- Générer de nouvelles variables utiles a partir d'existantes :
df['prix_par_kg'] = df['prix'] / df['poids']

df['anciennete’] = 2024 - df['annee']

= Fncodage des variables catégorielles
- One-hot encoding et label encoding
pd.get_dummies(df, columns=['carburant'])
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

df['sexe_code'] = le.fit_transform(df['sexe'])

* Normalisation et standardisation

- Mise a I'échelle pour les modéles sensibles (KNN, régression linéaire, etc.)
from sklearn.preprocessing import MinMaxScaler, StandardScaler
MinMaxScaler().fit_transform(df[['revenu']])
StandardScaler().fit_transform(df[['revenu']])

» Détection des incohérences métier

- Exemple : un poids inférieur a 300 kg ou un dge supérieur a 120 ans
df[df['poids'] < 300]

df[df['age'] > 120]

e & Atelier pratique :

¢ Identifier et traiter les valeurs manquantes, aberrantes et incohérentes
¢ Nettoyer des colonnes texte, unifier les formats

e Créer des colonnes utiles pour la modélisation

¢ Appliquer une normalisation et encoder les catégories

Groupement, jointure et agrégations :

» Moyennes, sommes, comptages par catégorie

df.groupby('marque’)[df].mean()

df.groupby('carburant')['puissance'].sum()

df.groupby('type’).size() # Nombre d'éléments par type

= Agrégations multiples avec agg()
df.groupby('marque’).agg({

'prix': ['mean’, 'max’, 'std’],

'poids': 'median’

}

= Agrégation sur plusieurs colonnes simultanées
gb = df.groupby(['marque’, ‘carburant'])
gb['prix'].mean()

= Tableaux croisés dynamiques (Pivot Tables)
pd.pivot_table(df, values='prix’, index="marque’, columns="carburant’, aggfunc="mean’)

= Tride groupes agrégés
df.groupby('marque’)['prix'].mean().sort_values(ascending=False)

» Fusions entre DataFrames (jointures relationnelles)
pd.merge(df_clients, df_commandes, on="client_id’, how='inner')

pd.merge(dfl, df2, left_on='id", right_on="produit_id', how="'outer')

= Concaténation (empiler plusieurs tableaux)

pd.concat([df1, df2], axis=0) # ligne par ligne
pd.concat([df1, df2], axis=1) # colonne par colonne
o & Atelier:

e Créer un tableau croisé des prix moyens par marque et type de carburant
e Fusionner des données clients et commandes pour calculer la dépense totale par client

Analyse exploratoire et statistiques :
= Statistiques de base
- Moyenne, médiane, écart-type, quartiles

df.describe()
df['prix'].mean(), df['prix'].std(), df['prix'].quantile([0.25, 0.5, 0.75])

» Variance et covariance

df.var()

df.cov()

df.corr() # corrélation de Pearson

» Visualisation des distributions
- Histogramme et boite a moustaches

import seaborn as sns
sns.histplot(df['prix'], bins=20, kde=True)
sns.boxplot(x=df["prix'])

= Analyse de la variance entre groupes (ANOVA simplifiée)
from scipy.stats import f_oneway
f_oneway(df[df['marque’'] == 'Peugeot’]['prix'], df[df['marque'] == 'Renault']['prix'])

® Régression linéaire simple avec Statsmodels

import statsmodels.api as sm

X = df[['poids']]

y = df['prix']

X = sm.add_constant(X) # Ajout de l'intercept
model = sm.OLS(y, X).fit()

print(model.summary())

o & Atelier:

¢ Comparer visuellement les distributions de prix entre marques
e Afficher les valeurs statistiques d'une variable numérique
e Vérifier les écarts-types et quartiles entre catégories

Visualisation des données :
= Histogramme :
import seaborn as sns

sns.histplot(df['prix'], bins=30)

= Nuage de points :
sns.scatterplot(x='poids', y="prix', hue='marque’, data=df)

» Heatmap de corrélations :
sns.heatmap(df.corr(), annot=True, cmap="'coolwarm’)

= \Visualisations interactives avec Plotly :

import plotly.express as px
px.scatter(df, x="poids', y="prix', color='carburant’)

o & Atelier:

e Comparaison visuelle de modéles de voitures selon leur performance et prix.

