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statement or definition on our data set which is very important.
T hrough t he process of E DA , w e c a n a s k t o d e f in e th e p r o b l e m 
a n d m a n y m o r e . I t o f t e n t a k e s m u c h t i m e t o e x p l o r e t h e d a t a . 
• Plotting in EDA consists of Histograms, Box plot, Scatter plot 

the data in order to apply Machine learning.
• This step is very important especially when we arrive at modeling 

visually.
sets by summarizing their main characteristics often plotting them 
• Exploratory Data A nalysis or (EDA) is understanding the data 
Analysis
2. Data Preprocessing: Explorator y Data 
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     2. Data Preprocessing: Explorator y Data Anal ysis



   

2. Data Preprocessing: Exploratory Data 
Analysis

Prescriptive
 

What

 

action

 

should

 

we

 

take?

 

What

 

happened? Why

 

did

 

it

 

happen? What

 

is

 

likely

 

to

 

happen?

PredictiveDiagnostic
 

Descriptive
 

   



   

2. Data Preprocessing: Measures of 
Central Tendency 
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2. Data Preprocessing: Measures of 
Dispersion 
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The
 
sklearn.preprocessing

 
package

 
provides

 
several

 
common

 

utility
 
functions

 
and

 
transformer

 
classes

 
to

 
change

 
raw

 
feature

 

vectors
 
into

 
a

 
representation

 
that

 
is

 
more

 
suitable

 
for

 
the

 
downstream

 

estimators.

1) Standardization
2) Normalization
3) Encoding

 
categorical

 
features

4) Discretization
5) Generating

 
polynomial

 
features

6) Custom
 
transformers

3. Feature Selection: Preprocessing
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3. Feature Selection: Preprocessing
1.

 
Standardization:

 
is

 

a

 

scaling

 

technique

 

where

 

the

 

values
 
are

 

centered
 
around

 
the

 
mean

 

with

 

a

 

unit

 

standard
 
deviation.

 

This

 

means

 

that

 

the

 

mean

 

of

 

the

 

attribute

 

becomes

 

zero

 

and

 

the

 

resultant

 

distribution

 

has

 

a

 

unit

 

standard

 

deviation.
The

 

standard

 

score

 

of

 

a

 

sample

 

x
 
is

 

calculated

 

as:

 

z
 
=

 
(x

 
–
 
u)

 
/
 
s

x

 

=

 

variable
u

 

=

 

mean
s

 

=

 

standard

 

deviation



   

3. Feature Selection: 1. Standardization - 
StandardScaler

from

 

sklearn.preprocessing

 

import

 

StandardScaler
import

 

numpy

 

as

 

np

X_train

 

=

 

np.array([[

 

1.,

 

-1.,

  

2.],

                               

[

 

2.,

  

0.,

  

0.],

                               

[

 

0.,

  

1.,

 

-1.]])

scaler

 

=

 

StandardScaler().fit_transform(X_train)
print(scaler)

Out:
[[

 

0.

                 

-1.22474487

  

1.33630621]

 

[

 

1.22474487

  

0.

                   

-0.26726124]

 

[-1.22474487

  

1.22474487

  

-1.06904497]]



   

3. Feature Selection: 1. Standardization - 
Scaling Features to a Range
import

 

numpy

 

as

 

np
from

 

sklearn

 

import

 

preprocessing
X_train

 

=

 

np.array([[

 

1.,

 

-1.,

  

2.],

 

[

 

2.,

  

0.,

  

0.],

 

[

 

0.,

  

1.,

 

-1.]])

#

 

Here

 

is

 

an

 

example

 

to

 

scale

 

a

 

data

 

matrix

 

to

 

the

 

[0,

 

1]

 

range:
print("[0,

 

1]

 

:

 

\n")
min_0_max_1_scaler

 

=

 

preprocessing.MinMaxScaler()
X_train_min_0_max_1

 

=

 

min_0_max_1_scaler.fit_transform(X_train)
print(X_train_min_0_max_1)

#

 

between

 

a

 

given

 

minimum

 

and

 

maximum

 

value
print("min

 

-

 

max

 

:

 

\n")
min_max_scaler

 

=

 

preprocessing.MinMaxScaler(feature_range=(0,

 

10))
X_train_minmax

 

=

 

min_max_scaler.fit_transform(X_train)
print(X_train_minmax)

#

 

scaling

 

in

 

a

 

way

 

that

 

the

 

training

 

data

 

lies

 

within

 

the

 

range

 

[-1,

 

1]
print("[-1,

 

1]

 

:

 

\n")
max_abs_scaler

 

=

 

preprocessing.MaxAbsScaler()
X_train_maxabs

 

=

 

max_abs_scaler.fit_transform(X_train)
print(X_train_maxabs)



   

3. Feature Selection: 1. Standardization - Scaling Data 
with Outliers

If

 

your

 

data

 

contains

 

many

 

outliers,

 

scaling

 

using

 

the

 

mean

 

and

 

variance

 

of

 

the

 

data

 

is

 

l ikely

 

to

 

not

 

work

 

very

 

well .

 

In

 

these

 

cases,

 

you

 

can

 

use

 

robust_scale

 

and

 

RobustScaler

 

as

 

drop-in

 

replacements

 

instead.

 

They

 

use

 

more

 

robust

 

estimates

 

for

 

the

 

center

 

and

 

range

 

of

 

your

 

data.

import

 

numpy

 

as

 

np
from

 

sklearn

 

import

 

preprocessing

X_train

 

=

 

np.array([[

 

1.,

 

-1.,

  

2.],

 

[

 

2.,

  

0.,

  

0.],

 

[

 

0.,

  

1.,

 

-1.]])
scaler

 

=

 

preprocessing.RobustScaler()

 

X_train_rob_scal

 

=

 

scaler.fit_transform(X_train)
print(X_train_rob_scal)



   

3. Feature Selection: 1. Standardization

#
 
Save

 
the

 
scaler

from
 
pickle

 
import

 
dump

dump(scaler,
 
open("/content/scaler.pkl",

 
"wb"))

#
 
Load

 
the

 
scaler

from
 
pickle

 
import

 
load

my_scaler
 
=

 
load(open("/content/scaler.pkl",

 
"rb"))

scaler_result
 
=

 
my_scaler.transform(X_train)

print(scaler_result)



   

              
               

           
 

   
   

                 
  

print(X_normalized)
X_normalized

 

=

 

preprocessing.normalize(X)
X

 

=

 

[[

 

1.,

 

-1.,

 

2.],

 

[

 

2.,

 

0.,

 

0.],

 

[

 

0.,

 

1.,

 

-1.]]

import

 

numpy

 

as

 

np
from

 

sklearn

 

import

 

preprocessing

clustering

 

contexts.
known

 

as

 

Min-Max

 

scaling.

 

It

 

often

 

used

 

in

 

text

 

classification

 

and

 
and

 

scaled

 

so

 

that

 

they

 

end

 

up

 

ranging

 

between

 

0

 

and

 

1.

 

It

 

is

 

also

 Normalization
 

is

 

a

 

scaling

 

technique

 

in

 

which

 

values

 

are

 

shifted

 3. Feature Selection: 2. Nor malization



   

              
         
          

        
   

         
       

cases where the data follows a Gaussian distribution.
S ta n dar d i za ti on , on t he ot h e r h a nd , ca n be h e l pf ul i n 

Neighbors and Neural Networks.
a s s u m e a n y d i s t r i b u t i o n o f t h e d a t a l i k e K - N e a r e s t 
di strib ution . T his can be use ful in al gorithms t hat d o not 
di s t ri b ut i o n of yo ur da ta d oe s no t fo ll o w a Ga u ss ia n 
No rmal ization is good t o use when you kno w t hat the 

3. Feature Selection: 2. Nor malization



   

     
             

         
        

from

 

sklearn

 

import

 

preprocessing
#genders

 

=

 

['female',

 

'male']
#locations

 

=

 

['from

 

Africa',

 

'from

 

Asia',

 

'from

 

Europe',

 

'from

 

US']
#browsers

 

=

 

['uses

 

Chrome',

 

'uses

 

Firefox',

 

'uses

 

Safari']

X

 

=

 

[['male',

 

'from

 

US',

 

'uses

 

Safari'],

 

['female',

 

'from

 

Europe',

 

'uses

 

Safari'],

 
     

['female',

 

'from

 

Asia',

 

'uses

 

Firefox'],

 

['male',

 

'from

 

Africa',

 

'uses

 

Chrome']]
enc

 

=

 

preprocessing.OrdinalEncoder()
X_enc

 

=

 

enc.fit_transform(X)
print(X_enc)

[[1.

 

3.

 

2.]
 

[0.

 

2.

 

2.]
 

[0.

 

1.

 

1.]
 

[1.

 

0.

 

0.]]

new

 

feature

 

of

 

integers

 

(0

 

to

 

n_categories

 

-

 

1).
OrdinalEncoder.

 

This

 

estimator

 

transforms

 

each

 

categorical

 

feature

 

to

 

one

 To

 

c

 

o

 

n

 

v

 

e

 

r

 

t

 

c

 

a

 

t

 

e

 

g

 

o

 

r

 

i

 

c

 

a

 

l

 

f

 

e

 

a

 

t

 

u

 

r

 

e

 

s

 

t

 

o

 

s

 

u

 

c

 

h

 

i

 

n

 

t

 

e

 

g

 

e

 

r

 

c

 

o

 

d

 

e

 

s

 

,

 

w

 

e

 

c

 

a

 

n

 

u

 

s

 

e

 

t

 

h

 

e

 Categorical Features
3. Feature Selection: 3. Encoding 



   

     
             

        
         

  

     
  

      
  

     

   

print(df.info())
df=

 
df.drop(["Date"],

 
axis=1)

df["day_of_year"]
 

=
 

df["Date"].dt.dayofyear
df["week_of_year"]

 
=

 
df["Date"].dt.weekofyear

df["day"]
 

=
 

df["Date"].dt.day
df["month"]

 
=

 
df["Date"].dt.month

df["year"]
 

=
 

df["Date"].dt.year

df["Date"]
 

=
 

pd.to_datetime(df["Date"])

time,
 

hour,
 

minute,
 

second,
 

day_part)
 

from
 

the
 

given
 

date-time
 

variable.
part

 
(year,

 
quarter,

 
month,

 
day,

 
day_of_week,

 
day_of_year,

 
week_of_year,

 Datetime
 

Feature
 

Engineering:
 

we
 

can
 

extract
 

the
 

component
 

of
 

the
 

date-time
 

Categorical Features
3. Feature Selection: 3. Encoding 



   

3. Feature Selection: 4. Encoding 
Categorical Labels
Label

 
Encoding

 
(LabelEncoder)

 
is

 
a

 
popular

 
encoding

 
technique

 
for

 
handling

 

categorical
 
variables.

 
In

 
this

 
technique,

 
each

 
label

 
is

 
assigned

 
a

 
unique

 
integer

 

based
 
on

 
alphabetical

 
orderingwith

 
value

 
between

 
0
 
and

 
n_classes-1.

#

 

Encoding

 

Categorical

 

Labels
from

 

sklearn

 

import

 

preprocessing

labels

 

=

 

["India",

 

"US",

 

"Japan",

 

"US",

 

"Japan"]
le

 

=

 

preprocessing.LabelEncoder()
new_labels

 

=

 

le.fit_transform(labels)

print(new_labels)

print("inverse_transform

 

:

 

\n",
                                    

le.inverse_transform([2,

 

0,

 

1]))

The
 
country

 
names

 
do

 
not

 
have

 

an
 
order

 
or

 
rank .

 
But,

 
when

 

label
 
encoding

 
is

 
performed,

 
the

 

country
 
names

 
are

 
ranked

 
based

 

on
 
the

 
alphabets.

 
Due

 
to

 
this,

 

there
 
is

 
a

 
very

 
high

 
probability

 

that
 
the

 
model

 
captures

 
the

 

relationship
 
between

 
countries

 

such
 
as

 
India

 
<

 
Japan

 
<

 
US.



   

3. Feature Selection: 4. Encoding 
Categorical Labels

One-Hot
 
Encoding

 

is

 

another

 

popular

 

technique

 

for

 

treating

 

categorical

 

variables.

 

It

 

simply

 

creates

 

additional

 

features

 

based

 

on

 

the

 

number

 

of

 

unique

 

values

 

in

 

the

 

categorical

 

feature.

 

Every

 

unique

 

value

 

in

 

the

 

category

 

will

 

be

 

added

 

as

 

a

 

feature.



   

3. Feature Selection: 4. Encoding 
Categorical Labels

#
 
Importing

 
one

 
hot

 
encoder

 

from
 
sklearn.preprocessing

 
import

 
OneHotEncoder

#
 
Creating

 
one

 
hot

 
encoder

 
object

 

onehotencoder
 
=

 
OneHotEncoder()

#
 
Reshape

 
the

 
1-D

 
country

 
array

 
to

 
2-D

 
as

 
fit_transform

 
expects

 
2-D

  

and
 
finally

 
fit

 
the

 
object

 

X
 
=

 
onehotencoder.fit_transform(my_data.Country.values.reshape(-                                                                                      

1,1)).toarray()
print(X)



   

3. Feature Selection: 5. Discretization
Discretization

 
(otherwise

 
known

 
as

 
quantization

 
or

 
binning)

 

provides
 
a

 
way

 
to

 
partition

 
continuous

 
features

 
into

 

discrete
 
values.



   

3. Feature Selection: 5. Discretization

from

 

sklearn

 

import

 

preprocessing
import

 

numpy

 

as

 

np
X

 

=

 

np.array([[

 

-3.,

 

5.,

 

15

 

],
                      

[

  

0.,

 

6.,

 

14

 

],
                      

[

  

6.,

 

3.,

 

11

 

]])
#

 

'onehot’,

 

‘onehot-dense’,

 

‘ordinal’
kbd

 

=

 

preprocessing.KBinsDiscretizer(n_bins=[3,

 

2,

 

2],

 

encode='ordinal')

X_kbd

 

=

 

kbd.fit_transform(X)
print(X_kbd)



   

3. Feature Selection: 5.1 Feature 
Binarization
from

 
sklearn

 
import

 
preprocessing

import
 
numpy

 
as

 
np

X
 
=

 
[[

 
1.,

 
-1.,

  
2.],[

 
2.,

  
0.,

  
0.],[

 
0.,

  
1.,

 
-1.]]

binarizer
 
=

 
preprocessing.Binarizer()

X_bin
 
=

 
binarizer.fit_transform(X)

print(X_bin)

#
 
It

 
is

 
possible

 
to

 
adjust

 
the

 
threshold

 
of

 
the

 
binarizer:

binarizer_1
 
=

 
preprocessing.Binarizer(threshold=1.1)

X_bin_1
 
=

 
binarizer_1.fit_transform(X)

print(X_bin_1)



   

3. Feature Selection: 6. Generating 
Polynomial Features
Often

 

it

 

is

 

useful

 

to

 

add

 

complexity

 

to

 

the

 

model

 

by

 

considering

 

nonlinear

 

features

 

of

 

the

 

input

 

data.

 

A

 

simple

 

and

 

common

 

method

 

to

 

use

 

is

 

polynomial

 

features,

 

which

 

can

 

get

 

features’

 

high-order

 

and

 

interaction

 

terms.

 

It

 

is

 

implemented

 

in

 

PolynomialFeatures.

for

 

2

 

features

 

:



   

3. Feature Selection: 6. Generating 
Polynomial Features
from

 
sklearn

 
import

 
preprocessing

import
 
numpy

 
as

 
np

X
 
=

 
np.arange(9).reshape(3,

 
3)

print(X)
poly

 
=

 
preprocessing.PolynomialFeatures(degree=3,

 

interaction_only=True)

X_poly
 
=

 
poly.fit_transform(X)

print(X_poly)



   

3. Feature Selection: 7. Custom 
Transformers
Often,

 

you

 

will

 

want

 

to

 

convert

 

an

 

existing

 

Python

 

function

 

into

 

a

 

transformer

 

to

 

assist

 

in

 

data

 

cleaning

 

or

 

processing.

 

You

 

can

 

implement

 

a

 

transformer

 

from

 

an

 

arbitrary

 

function

 

with

 

FunctionTransformer.

 

For
 
example,

 
to

 
build

 
a
 

transformer
 
that

 
applies

 
a

 
log

 
transformation

 
in

 
a

 
pipeline,

 
do:

from
 
sklearn

 
import

 
preprocessing

import
 
numpy

 
as

 
np

transformer
 
=

 
preprocessing.FunctionTransformer(np.log1p,

 

validate=True)
X

 
=

 
np.array([[0,

 
1],

 
[2,

 
3]])

X_tr
 
=

 
transformer.fit_transform(X)

print(X_tr)



   

3. Feature Selection: Text Feature 

scikit-learn

 

provides

 

utilities

 

for

 

the

 

most

 

common

 

ways

 

to

 

extract

 

numerical

 

features

 

from

 

text

 

content,

 

namely:

•

 

Tokenizing

 

strings

 

and

 

giving

 

an

 

integer

 

id

 

for

 

each

 

possible

 

token,

 

for

 

instance

 

by

 

using

 

white-spaces

 

and

 

punctuation

 

as

 

token

 

separators.

•

 

Counting

 

the

 

occurrences

 

of

 

tokens

 

in

 

each

 

document.

•

 

Normalizing

 

and

 

weighting

 

with

 

diminishing

 

importance

 

tokens

 

that

 

occur

 

in

 

the

 

majority

 

of

 

samples

 

/

 

documents.



   

3. Feature Selection: Text Feature 

A

 

simple

 

way

 

we

 

can

 

convert

 

text

 

to

 

numeric

 

feature

 

is

 

via

 

binary

 

encoding.

 

In

 

this

 

scheme,

 

we

 

create

 

a

 

vocabulary

 

by

 

looking

 

at

 

each

 

distinct

 

word

 

in

 

the

 

whole

 

dataset

 

(corpus).

 

For

 

each

 

document,

 

the

 

output

 

of

 

this

 

scheme

 

will

 

be

 

a

 

vector

 

of

 

size

 

N

 

where

 

N

 

is

 

the

 

total

 

number

 

of

 

words

 

in

 

our

 

vocabulary.

 

Initially

 

all

 

entries

 

in

 

the

 

vector

 

will

 

be

 

0.

 

If

 

the

 

word

 

in

 

the

 

given

 

document

 

exists

 

in

 

the

 

vocabulary

 

then

 

vector

 

element

 

at

 

that

 

position

 

is

 

set

 

to

 

1.

CountVectorizer

 

implements

 

both

 

tokenization

 

and

 

occurrence

 

counting

 

in

 

a

 

single

 

class.



   

from

 

sklearn.feature_extraction.text

 

import

 

CountVectorizer
texts

 

=

 

[

    

"blue

 

car

 

and

 

blue

 

window",

    

"black

 

crow

 

in

 

the

 

window",

    

"i

 

see

 

my

 

reflection

 

in

 

the

 

window"
]
vec

 

=

 

CountVectorizer(binary=True)
vec.fit(texts)
print([w

 

for

 

w

 

in

 

sorted(vec.vocabulary_.keys())])
X

 

=

 

vec.transform(texts).toarray()
print(X)

import

 

pandas

 

as

 

pd
pd.DataFrame(vec.transform(texts).toarray(),

 

columns=sorted(vec.vocabulary_.keys()))

3. Feature Selection: Text Feature 



   

3. Feature Selection: Text Feature 
Counting

 
is

 
another

 
approach

 
to

 
represent

 
text

 
as

 
a

 

numeric
 
feature.

 
It

 
is

 
similar

 
to

 
Binary

 
scheme

 
that

 
we

 
saw

 

earlier
 
but

 
instead

 
of

 
just

 
checking

 
if
 
a

 
word

 
exists

 
or

 
not,

 
it
 

also
 
checks

 
how

 
many

 
times

 
a
 
word

 
appeared.

vec
 
=

 
CountVectorizer(binary=False)



   

3. Feature Selection: Text Feature 

TF-IDF

 

stands

 

for

 

term

 

frequency-inverse

 

document

 

frequency.

 

We

 

saw

 

that

 

Counting

 

approach

 

assigns

 

weights

 

to

 

the

 

words

 

based

 

on

 

their

 

frequency

 

and

 

it’s

 

obvious

 

that

 

frequently

 

occurring

 

words

 

will

 

have

 

higher

 

weights.

 

But

 

these

 

words

 

might

 

not

 

be

 

important

 

as

 

other

 

words.

 

For

 

example,

 

let’s

 

consider

 

an

 

article

 

about

 

Travel

 

and

 

another

 

about

 

Politics.

 

Both

 

of

 

these

 

articles

 

will

 

contain

 

words

 

like

 

a,

 

the

 

frequently.

 

But

 

words

 

such

 

as

 

flight,

 

holiday

 

will

 

occur

 

mostly

 

in

 

Travel

 

and

 

parliament,

 

court

 

etc.

 

will

 

appear

 

mostly

 

in

 

Politics.

 

Even

 

though

 

these

 

words

 

appear

 

less

 

frequently

 

than

 

the

 

others,

 

they

 

are

 

more

 

important.

 

TF-IDF

 

assigns

 

more

 

weight

 

to

 

less

 

frequently

 

occurring

 

words

 

rather

 

than

 

frequently

 

occurring

 

ones.

 

It

 

is

 

based

 

on

 

the

 

assumption

 

that

 

less

 

frequently

 

occurring

 

words

 

are

 

more

 

important.



   

3. Feature Selection: Text Feature 
from

 

sklearn.feature_extraction.text

 

import

 

TfidfVectorizer
texts

 

=

 

[    

"blue

 

car

 

and

 

blue

 

window",    

"black

 

crow

 

in

 

the

 

window",    

"i

 

see

 

my

 

reflection

 

in

 

the

 

window"
]

vec

 

=

 

TfidfVectorizer()
vec.fit(texts)
print([w

 

for

 

w

 

in

 

sorted(vec.vocabulary_.keys())])
X

 

=

 

vec.transform(texts).toarray()
import

 

pandas

 

as

 

pd
pd.DataFrame(vec.transform(texts).toarray(),

   

columns=sorted(vec.vocabulary_.keys()))



   

3. Feature Selection: Image Feature 
#

 

image.extract_patches_2d

from

 

sklearn.feature_extraction

 

import

 

image
from

 

sklearn.datasets

 

import

 

fetch_olivetti_faces
import

 

matplotlib.pyplot

 

as

 

plt

 

import

 

matplotlib.image

 

as

 

img

data

 

=

 

fetch_olivetti_faces()
plt.imshow(data.images[0])

#

 

patches

 

=

 

image.extract_patches_2d(data.images[0],

 

(3,

 

3),

 

max_patches=2,random_state=0)
patches

 

=

 

image.extract_patches_2d(data.images[0],

 

(3,

 

3))
print("Image

 

shape:

 

",

 

data.images[0].shape,

 

"

 

Patches

 

shape:

 

",

 

patches.shape)
print("Patches

 

:

 

\n",len(patches.flatten()))



   

3. Feature Selection: Image Feature 

import

 

cv2
def

 

hu_moments(image):  

image

 

=

 

cv2.cvtColor(image,

 

cv2.COLOR_BGR2GRAY)  

feature

 

=

 

cv2.HuMoments(cv2.moments(image)).flatten()  

return

 

feature

def

 

histogram(image,mask=None):    

image

 

=

 

cv2.cvtColor(image,

 

cv2.COLOR_BGR2HSV)    

hist

 

=

 

cv2.calcHist([image],[0],None,[256],[0,256])    

cv2.normalize(hist,

 

hist)    

return

 

hist.flatten()



   

3. Feature Selection: Image Feature 
import

 

mahotas
def

 

haralick_moments(image):
  

#image

 

=

 

cv2.cvtColor(image,

 

cv2.COLOR_BGR2GRAY)
  

image

 

=

 

image.astype(int)
  

haralick

 

=

 

mahotas.features.haralick(image).mean(axis=0)
  

return

 

haralick

class

 

ZernikeMoments:
def

 

__init__(self,

 

radius):
#

 

store

 

the

 

size

 

of

 

the

 

radius

 

that

 

will

 

be
#

 

used

 

when

 

computing

 

moments
self.radius

 

=

 

radius
 

def

 

describe(self,

 

image):
#

 

return

 

the

 

Zernike

 

moments

 

for

 

the

 

image
return

 

mahotas.features.zernike_moments(image,

 

self.radius)



   

3. Feature Selection: Image Feature 
import

 

cv2
import

 

mahotas
import

 

numpy

 

as

 

np
from

 

sklearn.datasets

 

import

 

fetch_olivetti_faces
import

 

matplotlib.pyplot

 

as

 

plt

 

data

 

=

 

fetch_olivetti_faces()
plt.imshow(data.images[0])

hu_mot

 

=

 

hu_moments(data.images[0])
print("hu_mot

 

:

 

",

 

len(hu_mot),"\n",hu_mot)

hist

 

=

 

histogram(data.images[0])
print("hist

 

:

 

",

 

len(hist),"\n",hist)

haralick

 

=

 

haralick_moments(data.images[0])
print("haralick

 

:

 

",

 

len(haralick),"\n",haralick)

desc

 

=

 

ZernikeMoments(21)
zernike

 

=

 

desc.describe(data.images[0])
print("zernike

 

:

 

",

 

len(zernike),"\n",zernike)



   

3. Feature Selection: Image Feature 

from
 
silx.opencl

 
import

 
sift

sift_ocl
 
=

 
sift.SiftPlan(template=img,

 
devicetype="GPU")

keypoints
 
=

 
sift_ocl.keypoints(img)



   

3. Feature Selection: Image Feature 
!pip

 

install

 

mediapipe
!pip

 

install

 

cvzone
#

 

https://github.com/cvzone/cvzone

from

 

cvzone.FaceMeshModule

 

import

 

FaceMeshDetector
import

 

cv2

img

 

=

 

cv2.imread("/content/1.jpg")
detector

 

=

 

FaceMeshDetector(maxFaces=2)

img,

 

faces

 

=

 

detector.findFaceMesh(img)
if

 

faces:

    

print(faces[0])

cv2_imshow(img)

  

Face

 

Landmark



   

4. Dimensionality Reduction: Principal 
Component Analysis (PCA) 

Principal
 
Component

 
Analysis

 
(PCA)

 
is

 
a

 
statistical

 

method
 
that

 
creates

 
new

 
features

 
or

 
characteristics

 
of

 
data

 

by
 
analyzing

 
the

 
characteristics

 
of

 
the

 
dataset.

 
Essentially,

 

the
 
characteristics

 
of

 
the

 
data

 
are

 
summarized

 
or

 
combined

 

together.
 
You

 
can

 
also

 
conceive

 
of

 
Principal

 
Component

 

Analys is
 
as

 
"squishing"

 
data

 
down

 
into

 
just

 
a

 
few

 

dimensions
 
from

 
much

 
higher

 
dimensions

 
space.



   

from
 
sklearn

 
import

 
datasets

from
 
sklearn.decomposition

 
import

 
PCA

dat
 
=

 
datasets.load_breast_cancer()

X,
 
Y

 
=

 
dat.data,

 
dat.target

print("Examples
 
=

 
",X.shape

 
,"

 
Labels

 
=

 
",

 
Y.shape)

pca
 
=

 
PCA(n_components

 
=

 
5)

X_pca
 
=

 
pca.fit_transform(X)

print("Examples_PCA
 
=

 
",X_pca.shape

 
,"

 
Labels

 
=

 
",

 
Y.shape)

4. Dimensionality Reduction: Principal 
Component Analysis (PCA) 



   

4. Dimensionality Reduction: Kernel 
Principal Component Analysis (KPCA) 
Non-linear

 

dimensionality

 

reduction

 

through

 

the

 

use

 

of

 

kernels.

from

 

sklearn

 

import

 

datasets
from

 

sklearn.decomposition

 

import

 

KernelPCA

dat

 

=

 

datasets.load_breast_cancer()
X,

 

Y

 

=

 

dat.data,

 

dat.target
print("Examples

 

=

 

",X.shape

 

,"

 

Labels

 

=

 

",

 

Y.shape)
#

 

kernel

 

:

 

"linear"

 

|

 

"poly"

 

|

 

"rbf"

 

|

 

"sigmoid"

 

|

 

"cosine"

 

|

 

"precomputed"
kpca

 

=

 

KernelPCA(n_components=7,

 

kernel='rbf')
X_kpca

 

=

 

kpca.fit_transform(X)
print("Examples

 

=

 

",X_kpca.shape

 

,"

 

Labels

 

=

 

",

 

Y.shape)



   

4. Dimensionality Reduction: PCA VS 
KPCA 



   

4. Dimensionality Reduction: Linear 
Discriminant Analysis (LDA) 
In

 

case

 

of

 

uniformly

 

distributed

 

data,

 

LDA

 

almost

 

always

 

performs

 

better

 

than

 

PCA.

 

However

 

if

 

the

 

data

 

is

 

highly

 

skewed

 

(irregularly

 

distributed)

 

then

 

it

 

is

 

advised

 

to

 

use

 

PCA

 

since

 

LDA

 

can

 

be

 

biased

 

towards

 

the

 

majority

 

class.

from

 

sklearn.discriminant_analysis

 

import

 

LinearDiscriminantAnalysis

lda

 

=

 

LinearDiscriminantAnalysis(n_components=2)
X_lda

 

=

 

lda.fit(X,

 

Y).transform(X)
print("Examples

 

=

 

",X_lda.shape

 

,"

 

Labels

 

=

 

",

 

Y.shape)



   

5.  Having an Imbalanced Dataset?
•
  

The
 
learning

 
phase

 
and

 
the

 
subsequent

 
prediction

 
of

 
machine

 
learning

 
algorithms

 
can

 

be
 
affected

 
by

 
the

 
problem

 
of

 
imbalanced

 
data

 
set.

 
The

 
balancing

 
issue

 
corresponds

 
to

 

the
 
difference

 
of

 
the

 
number

 
of

 
samples

 
in

 
the

 
different

 
classes.

•
  
imbalanced-learn

 
is

 
a

 
python

 
package

 
offering

 
a

 
number

 
of

 
re-sampling

 
techniques

 

commonly
 
used

 
in

 
datasets

 
showing

 
strong

 
between-class

 
imbalance.

 
It

 
is

 
compatible

 

with
 
scikit-learn

 
and

 
is

 
part

 
of

 
scikit-learn-contrib

 
projects.



   

5.  Having an Imbalanced Dataset?
from

 

imblearn.over_sampling

 

import

 

RandomOverSampler,

 

SMOTE,

 

ADASYN,

 

BorderlineSMOTE,

 

SMOTENC

"""
ros

 

=

 

RandomOverSampler(random_state=0)
X_resampled,

 

y_resampled

 

=

 

ros.fit_resample(X,

 

y)
"""

X_resampled,

 

y_resampled

 

=

 

SMOTE().fit_resample(X,

 

y)

#

 

X_resampled,

 

y_resampled

 

=

 

ADASYN().fit_resample(X,

 

y)

#

 

X_resampled,

 

y_resampled

 

=

 

BorderlineSMOTE().fit_resample(X,

 

y)

"""
smote_nc

 

=

 

SMOTENC(categorical_features=[0],

 

random_state=0)

 

#

 

categorical_features:

 

Specified

 

which

 

features

 

are

 

categorical
X_resampled,

 

y_resampled

 

=

 

smote_nc.fit_resample(X,

 

y)
"""



   

6.  Training and Test Sets: Splitting Data
from

 
sklearn.model_selection

 
import

 
train_test_split

from
 
sklearn

 
import

 
datasets

dat
 
=

 
datasets.load_iris()

X
 
=

 
dat.data

Y
 
=

 
dat.target

print("Examples
 
=

 
",X.shape

 
,"

 
Labels

 
=

 
",

 
Y.shape)

#
 
stratify

 
:
 
If

 
not

 
None,

 
data

 
is

 
split

 
in

 
a

 
stratified

 
fashion,

 
using

 

this
 
as

 
the

 
class

 
labels.

X_train,
 
X_test,

 
Y_train,

 
Y_test

 
=

 
train_test_split(X,

 
              

Y,
 
test_size=

 
0.20,

 
random_state=100,

 
stratify=Y)

print("X_train
 
=

 
",X_train.shape

 
,"

 
Y_test

 
=

 
",

 
Y_test.shape)



   

6.  Training and Test Sets: Splitting Data
import

 
pandas

 
as

 
pd

from
 
sklearn.model_selection

 
import

 
train_test_split

dataframe
 
=

 
pd.read_csv("Iris_Dataset.csv")

 

#
 
split

 
into

 
input

 
and

 
output

 
elements

dataframe["species"]
 
=

 
dataframe["species"].map({"Iris-setosa":0,"Iris-versicolor":1,

 

"Iris-virginica":2})
X

 
=

 
dataframe.drop(["species"],axis=1).values

Y
 
=

 
dataframe["species"].values

print("X:
 
",X.shape,

 
"
 
Y:

 
",y.shape)

#
 
split

 
into

 
train

 
test

 
sets

X_train,
 
X_test,

 
Y_train,

 
Y_test

 
=

 
train_test_split(X,

 
              

Y,
 
test_size=

 
0.20,

 
random_state=100,

 
stratify=Y)

print("X_train
 
=

 
",X_train.shape

 
,"

 
Y_train

 
=

 
",

 
Y_train.shape)

print("X_test
  
=

 
",X_test.shape

 
,"

 
Y_test

 
=

 
",

 
Y_test.shape)



   

   
 

  

Attention
Thank you for your  




