AXxis 3: Research and analysis of data driven by Al

A Al jhagal) 2y 50 a0 Ay 5 ggean)
Algerian Democtratic Republic and Populaire "
alad) Cad) g dad) anlail) 3) 5 g

Ministry of Higher Education and Scientific Research

A5 oS ase) gmald yy AT Aaglia g L) pEDU Al gl) Adall)
2025 - Alad) audail) Clwsiga A I ghal) S

Data Preprocessing

Feature Selection
Scikit Learn

AXxis 3: Research and analysis of data driven by Al

2. Data Preprocessing: Exploratory Data
Analysis

 Exploratory Data Analysis or (EDA) is understanding the data
sets by summarizing their main characteristics often plotting them
visually.

* This step is very important especially when we arrive at modeling
the data In order to apply Machine learning.

* Plotting in EDA consists of Histograms, Box plot, Scatter plot
and many more. It often takes much time to explore the data.
Through the process of EDA, we can ask to define the problem
statement or definition on our data set which is very important. 2

AXxis 3: Research and analysis of data driven by Al

2. Data Preprocessing: Exploratory DataAnalysis

5
salar}-’

MJ
[]

yrs.since.phd

Prof AsstProf AssocProf 0

h
=

125 | |
200000 :
s [. a0 100 | rank |
e, g s s . - :. 150000 T L O | “
| I - ﬁssthf
y II. : = ' 50000 E ..

'.-... rank

)
a0 | discipline
S
175
E 20
0 s

0.0

200000

salary

150000
50
100000

. : i I~ . _ 0

15
0 50 0 100000 200000 yrs since phd
yrs.since.phd yrs.service salary

AXxis 3: Research and analysis of data driven by Al

2. Data Preprocessing: Exploratory Data
Analysis

- — Diagnostic — Predictive

What happened? Why did it happen? What is likely to happen?

/

What action should we take?

AXxis 3: Research and analysis of data driven by Al

2. Data Preprocessing: Measures of
Central Tendency

Term Definition

Central tendency The tendency for a set of values to gather around the middle of the set
Generally measured by mean, median, and mode

Mean Average

>*/n (sum of all values [x] over the number of values [n])
Should be applied to continuous data if normally distributed
Median Middle value of an ordered sample of numerical values
Extreme values do not affect the median as much as the mean, for example,
length of stay, house prices
Usually applied to numerical data (unless normally distributed)
Mode Value that occurs most frequently
Can be used for skewed numerical data or categorical data

Axis 3: Research and analysis of data driven by Al

2. Data Preprocessing: Measures of

Dispersion

Term Definition
Dispersion The spread of values
Range Highest and lowest values

Extreme or outlying values make unreliable
Provides no information on variability of the values between the two
extremes

Interquartile range

Is between the 25th and 75th centiles

s calculated by ordering all of the values and then excluding the bottom
and top 25% of values (the vast majority of outliers)

Used where the median is the appropriate measure of central tendency

Standard deviation (SD)

Used where the mean is the appropriate measure of central tendency
Measure of variation about the mean

= square root of the sample variance, where sample variance is the sum
of the individual values (x) minus the sample mean squared, over the
sample number () minus 1

J Z(x— Sample Mean)*/(n-1)

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: Preprocessing

The sklearn.preprocessing package provides several common
utility functions and transformer classes to change raw feature
vectors into a representation that is more suitable for the downstream
estimators.

1) Standardization

2) Normalization

3) Encoding categorical features
4) Discretization

5) Generating polynomial features
6) Custom transformers

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: Preprocessing

1. Standardization: is a scaling technique where the values are
centered around the mean with a unit standard deviation. This
means that the mean of the attribute becomes zero and the resultant
distribution has a unit standard deviation.

The standard score of a sample x is calculated as:
Z = (x — u) I S Calculating Standard Deviation

T (X —X)?
X = variable Sx = \/Z 1

U = mean
s = standard deviation

Normal Distribution Curve 8

Axis 3: Research and analysis of data driven by Al

3. Feature Selection: 1. Standardization -
StandardScaler

from sklearn.preprocessing import StandardScaler
import numpy as np

X _train = np.array([[1., -1., 2.], Out:
[2., 0., 0] [0. -1.22474487 1.33630621]
v Y [1.22474487 0. -0.26726124]
[0, 1. -1.]]) [-1.22474487 1.22474487 -1.06904497]]

scaler = StandardScaler().fit_transform(X_train)
print(scaler)

Axis 3: Research and analysis of data driven by Al

3. Feature Selection: 1. Standardization -
Scaling Features to a Range

import numpy as np
from sklearn import preprocessing
X_train = np.array([[1., 1., 2.],[2., 0., 0.],[0., 1., -1.]])

Here is an example to scale a data matrix to the [0, 1] range:
print("[0, 1] : \n")

min_0_max_1_scaler = preprocessing.MinMaxScaler()
X_train_min_0_max_1 =min_0_max_1_scaler.fit_transform(X_train)
print(X_train_min_0_max_1)

between a given minimum and maximum value

print("min - max : \n")

min_max_scaler = preprocessing.MinMaxScaler(feature_range=(0, 10))
X_train_minmax = min_max_scaler.fit_transform(X_train)
print(X_train_minmax)

scaling in a way that the training data lies within the range [-1, 1]
print("[-1, 1] : \n")

max_abs_scaler = preprocessing.MaxAbsScaler()
X_train_maxabs = max_abs_scaler.fit_transform(X_train)
print(X_train_maxabs)

Axis 3: Research and analysis of data driven by Al

3. Feature Selection: 1. Standardization - Scaling Data
with Outliers

If your data contains many outliers, scaling using the mean and variance of
the data is likely to not work very well. In these cases, you can use
robust _scale and RobustScaler as drop-in replacements instead. They use
more robust estimates for the center and range of your data.

import numpy as np
from sklearn import preprocessing

X_train = np.array([[1.,-1., 2.],[2.,, 0., 0.],[0., 1., -1.]])
scaler = preprocessing.RobustScaler()
X_train_rob_scal = scaler.fit_transform(X_train)
print(X_train_rob_scal)

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: 1. Standardization

Save the scaler
from pickle import dump
dump(scaler, open(“/content/scaler.pkl™, "wb™))

Load the scaler

from pickle import load

my_scaler = load(open("/content/scaler.pkl™, "rb"))
scaler_result = my_ scaler.transform(X_train)
print(scaler_result)

Axis 3: Research and analysis of data driven by Al

3. Feature Selection: 2. Normalization

Normalization is a scaling technique in which values are shifted

and scaled so that they end up ranging between 0 and 1. It is also
known as Min-Max scaling. It often used in text classification and
clustering contexts.

from sklearn import preprocessing
import numpy as np

X=[[1.,1., 2],[2, 0, 0.],[O0., 1., -1.]]
X_normalized = preprocessing.normalize(X)
print(X_normalized)

Axis 3: Research and analysis of data driven by Al

3. Feature Selection: 2. Normalization

Normalization is good to use when you know that the
distribution of your data does not follow a Gaussian
distribution. This can be useful in algorithms that do not
assume any distribution of the data like K-Nearest
Neighbors and Neural Networks.

Standardization, on the other hand, can be helpful in
cases where the data follows a Gaussian distribution.

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: 3. Encoding
Categorical Features
To convert categorical features to such integer codes, we can use the

OrdinalEncoder. This estimator transforms each categorical feature to one
new feature of integers (0 to n_categories - 1).

from sklearn import preprocessing [[1. 3. 2.]
#genders = ['female’, 'male’] [0. 2. 2]
#locations = ['from Africa’, 'from Asia’, ‘from Europe’, 'from US'] [0.1.1.]
#browsers = ['uses Chrome’, 'uses Firefox', 'uses Safari'] [1. 0. 0.]]

X =[['male’, 'from US', 'uses Safari'], ['female’, 'from Europe’, 'uses Safari'],
['‘female’, 'from Asia’, 'uses Firefox'], [male’, ‘from Africa', 'uses Chrome']]

enc = preprocessing.OrdinalEncoder()

X_enc = enc.fit_transform(X)

print(X_enc)

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: 3. Encoding
Categorical Features

Datetime Feature Engineering: we can extract the component of the date-time
part (year, quarter, month, day, day_of week, day of year, week of_year,
time, hour, minute, second, day part) from the given date-time variable.

df["Date"] = pd.to_datetime(df['Date"])

date_issued date_issued:year date_issued:month date_issued:day

df["year"] = df["Date": .dt.year 2 2013:10:25 2013 10 26
df["month"] = df["Date"].dt.month 3 2015-08-20 2015 : 20
df["day”] = df["Date"].dt.day 4 20190722 2014 7 22

df["week of year"] = df["Date"].dt.weekofyear
df["day_of year"] =dff"Date"].dt.dayofyear

df= df.drop(['Date"], axis=1)
print(df.info())

Axis 3: Research and analysis of data driven by Al

3. Feature Selection: 4. Encoding
Categorical Labels

Label Encoding (LabelEncoder) is a popular encoding technique for handling
categorical variables. In this technique, each label is assigned a unique integer
based on alphabetical orderingwith value between 0 and n_classes-1.

Encoding Categorical Labels The country names do not have
from sklearn import preprocessing an order or rank. But, when
labels = ["India", "US", "Japan”, "US", "Japan"] label encoding is performed, the
le = preprocessing.LabelEncoder() country names are ranked based
new_labels = le fit_transform(labels) on the alphabets. Due to this,

there is a very high probability
print(new_labels) that the model captures the

orint("inverse_transform : \n", relatlonshlp between countries
le.inverse_transform(2, 0, 1)) Such as India < Japan < US.

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: 4. Encoding
Categorical Labels

One-Hot Encoding is another popular technique for treating
categorical variables. It simply creates additional features based on
the number of unique values in the categorical feature. Every unique
value in the category will be added as a feature.

Country

Age

Salary

India

44

72000

usS

34

65000

Japan

46

98000

us

35

45000

Japan

23

34000

)

Country

Age

Salary

0

44

72000

34

65000

46

98000

= M =M

35

45000

23

34000

)

Age

Salary

44

72000

34

65000

46

98000

35

45000

o | O o o |~ | O

= | O (o o | O |k

o | o = | O N

23

34000

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: 4. Encoding
Categorical Labels

Importing one hot encoder

from sklearn.preprocessing import OneHotEncoder
Creating one hot encoder object

onehotencoder = OneHotEncoder()

Reshape the 1-D country array to 2-D as fit_transform expects 2-D

and finally fit the object

X = onehotencoder.fit_transform(my_data.Country.values.reshape(-
1,1)).toarray()

print(X)

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: 5. Discretization

Discretization (otherwise known as quantization or binning)
provides a way to partition continuous features into
discrete values.

Result before discretization Result after discretization

— |inear regression — |inear regression
157 —— decision tree | ===+ decision tree ° L]

Regression output
o
o

! ! ! ! 1 ! ! ! ! ! ! 1 ! !
-3 =2 -1 4] 1 2 3 =3 =2 -1 0 1 2 3
Input feature Input feature

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: 5. Discretization

from sklearn import preprocessing
import numpy as np
X = np.array([[-3., 5., 15],
[0.,6.,14],
[6.,3.,11]])
'onehot’, ‘onehot-dense’, ‘ordinal’
kbd = preprocessing.KBinsDiscretizer(n_bins=[3, 2, 2],
encode='ordinal’)

X _kbd = kbd.fit_transform(X)
print(X_kbd)

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: 5.1 Feature
Binarization

from sklearn import preprocessing
import numpy as np

X=[[1.,-1, 2],[2.,, 0., 0.],[0., 1., -1.]]
binarizer = preprocessing.Binarizer()
X_bin = binarizer.fit_transform(X)
print(X_bin)

It is possible to adjust the threshold of the binarizer:
binarizer_1 = preprocessing.Binarizer(threshold=1.1)
X _bin_1 = binarizer_1.fit_transform(X)

print(X_bin_1)

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: 6. Generating

Polynomial Features

Often it is useful to add complexity to the model by
considering nonlinear features of the input data. A simple
and common method to use is polynomial features, which

can get features’ high-order and interaction terms. It is
implemented in PolynomialFeatures.

for 2 features :

(Xl'.rX?) to (11X13 X?*.r X%leXE:X%)

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: 6. Generating
Polynomial Features

from sklearn import preprocessing

import numpy as np

X = np.arange(9).reshape(3, 3)

print(X)

poly = preprocessing.PolynomialFeatures(degree=3,
interaction_only=True)

X_poly = poly.fit_transform(X)
print(X_poly)

Axis 3: Research and analysis of data driven by Al

3. Feature Selection: 7. Custom
Transformers

Often, you will want to convert an existing Python function into a transformer to
assist in data cleaning or processing. You can implement a transformer from an
arbitrary function with FunctionTransformer. For example, to build a
transformer that applies a log transformation in a pipeline, do:

from sklearn import preprocessing
import numpy as np

transformer = preprocessing.FunctionTransformer(np.log1p,
validate=True)

X = np.array([[0, 1], [2, 3]])

X_tr = transformer.fit_transform(X)

print(X_tr)

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: Text Feature

scikit-learn provides utilities for the most common ways to extract
numerical features from text content, namely:

* Tokenizing strings and giving an integer id for each possible
token, for instance by using white-spaces and punctuation as token
separators.

« Counting the occurrences of tokens in each document.

* Normalizing and weighting with diminishing importance tokens
that occur in the majority of samples / documents.

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: Text Feature

A simple way we can convert text to numeric feature is via binary
encoding. In this scheme, we create a vocabulary by looking at each
distinct word in the whole dataset (corpus). For each document, the
output of this scheme will be a vector of size N where N is the total
number of words in our vocabulary. Initially all entries in the vector
will be 0. If the word in the given document exists in the vocabulary
then vector element at that position is set to 1.

CountVectorizer implements both tokenization and
occurrence counting in a single class.

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: Text Feature

from sklearn.feature_extraction.text import CountVectorizer
texts =

"blue car and blue window",

"black crow in the window",

"i see my reflection in the window" | _ _
] and | black |blue car [crow |in |my | reflection | see |the window
vec = CountVectorizer(binary=True) ol 1o 10 11 lo lole Lo 0 o I
vec.fit(texts)
print([w for w in sorted(vec.vocabulary_.keys())]) (1 0 't [0 [0 [t 10 0 0 |1 |1
X = vec.transform(texts).toarray()
print(X) 200 [0 |0 |0 |0 [1]1 |1 11

import pandas as pd
pd.DataFrame(vec.transform(texts).toarray(), columns=sorted(vec.vocabulary .keys()))

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: Text Feature

Counting is another approach to represent text as a

numeric feature. It is similar to Binary scheme that we saw
earlier but instead of just checking if a word exists or not, it
also checks how many times a word appeared.

vec = CountVectorizer(binary=False)

and black blue car crow in my reflection see the window

| 0 0 0 0 0
1 1 0

0 1 1

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: Text Feature

TF-IDF stands for term frequency-inverse document frequency. We saw that
Counting approach assigns weights to the words based on their frequency and
it's obvious that frequently occurring words will have higher weights. But these
words might not be important as other words. For example, let's consider an
article about Travel and another about Politics. Both of these articles will contain
words like a, the frequently. But words such as flight, holiday will occur mostly in
Travel and parliament, court etc. will appear mostly in Politics. Even though
these words appear less frequently than the others, they are more important.
TF-IDF assigns more weight to less frequently occurring words rather than
frequently occurring ones. It is based on the assumption that less frequently
occurring words are more important.

Axis 3: Research and analysis of data driven by Al

3. Feature Selection: Text Feature

from sklearn.feature extraction.text import TfidfVectorizer
texts = [
"blue car and blue window",

"black crow in the window", N
"i see my reflection in the window" Wy v = b y X log s df.)
tfm, = frequency of x iny
= Tfi i df, = number of d ts containing x
vec = TidfVectorizer) sty W o

vec.fit(texts)

print([w for w in sorted(vec.vocabulary .keys())])
X = vec.transform(texts).toarray()

import pandas as pd
pd.DataFrame(vec.transform(texts).toarray(),
columns=sorted(vec.vocabulary_.keys()))

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: Image Feature

image.extract_patches 2d

from sklearn.feature_extraction import image
from sklearn.datasets import fetch_olivetti_faces
import matplotlib.pyplot as plt

import matplotlib.image as img

data = fetch_olivetti_faces()
plt.imshow(data.images[0])

patches = image.extract_patches 2d(data.images[0], (3, 3),
max_patches=2,random_state=0)

patches = image.extract_patches 2d(data.images[0], (3, 3))

print("Image shape: ", data.images[0].shape, " Patches shape: ", patches.shape)
print("Patches : \n",len(patches.flatten()))

Axis 3: Research and analysis of data driven by Al

3. Feature Selection: Image Feature

import cv2

def hu_moments(image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
feature = cv2.HuMoments(cv2.moments(image)).flatten()
return feature

def histogram(image,mask=None):
image = cv2.cviColor(image, cv2.COLOR_BGR2HSV)
hist = cv2.calcHist([image],[0],None,[256],[0,256])
cv2.normalize(hist, hist)
return hist.flatten()

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: Image Feature

import mahotas

def haralick_moments(image):
#image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = image.astype(int)
haralick = mahotas.features.haralick(image).mean(axis=0)
return haralick

class ZernikeMoments:
def __init__(self, radius):
store the size of the radius that will be
used when computing moments
self.radius = radius

def describe(self, image):
return the Zernike moments for the image
return mahotas.features.zernike_moments(image, self.radius)

Axis 3: Research and analysis of data driven by Al

3. Feature Selection: Image Feature

import cv2

import mahotas

import numpy as np

from sklearn.datasets import fetch_olivetti faces
import matplotlib.pyplot as plt

data = fetch_olivetti_faces()
plt.imshow(data.images|[0])

hu_mot = hu_moments(data.images[0])
print("hu_mot : ", len(hu_mot),"\n",hu_mot)

hist = histogram(data.images[0])
print("hist : ", len(hist),"\n", hist)

haralick = haralick_moments(data.images[0])
print("haralick : ", len(haralick),"\n",haralick)

desc = ZernikeMoments(21)
zernike = desc.describe(data.images[0])
print("zernike : ", len(zernike),"\n",zernike)

AXxis 3: Research and analysis of data driven by Al

3. Feature Selection: Image Feature

from silx.opencl import sift
sift_ocl = sift.SiftPlan(template=img, devicetype="GPU")
keypoints = sift_ocl.keypoints(img)

Number of Keypoints - image 1 : - : - Matching keypoints : 10

Axis 3: Research and analysis of data driven by Al

3. Feature Selection: Image Feature

Ipip install mediapipe
Ipip install cvzone
https://github.com/cvzone/cvzone

from cvzone.FaceMeshModule import FaceMeshDetector
import cv2

img = cv2.imread("/content/1.jpg")
detector = FaceMeshDetector(maxFaces=2)

Face Landmark

img, faces = detector.findFaceMesh(img)
if faces:
print(faces[0])

cv2_imshow(img)

AXxis 3: Research and analysis of data driven by Al

4. Dimensionality Reduction: Principal
Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical
method that creates new features or characteristics of data
by analyzing the characteristics of the dataset. Essentially,
the characteristics of the data are summarized or combined
together. You can also conceive of Principal Component
Analysis as "squishing"” data down into just a few
dimensions from much higher dimensions space.

AXxis 3: Research and analysis of data driven by Al

4. Dimensionality Reduction: Principal
Component Analysis (PCA)

from sklearn import datasets
from sklearn.decomposition import PCA

dat = datasets.load _breast_cancer()
X, Y = dat.data, dat.target
print("Examples = ",X.shape ,” Labels =", Y.shape)

pca = PCA(n_components = 5)
X _pca = pca.fit_transform(X)
print("Examples PCA =" X pca.shape ,” Labels =", Y.shape)

AXxis 3: Research and analysis of data driven by Al

4. Dimensionality Reduction: Kernel
Principal Component Analysis (KPCA)

Non-linear dimensionality reduction through the use of kernels.

from sklearn import datasets
from sklearn.decomposition import KernelPCA

dat = datasets.load_breast_cancer()

X, Y = dat.data, dat.target

print("Examples = ",X.shape ," Labels =", Y.shape)

kernel : "linear" | "poly"” | "rbf" | "sigmoid" | "cosine" | "precomputed”
kpca = KernelPCA(n_components=7, kernel="rbf")

X_kpca = kpca.fit_transform(X)

print("Examples = ",X_kpca.shape ,” Labels =", Y.shape)

Axis 3: Research and analysis of data driven by Al

4. Dimensionality Reduction: PCA VS
KPCA

First three PCA directions First three KPCA directions

Ird eigenvector

AXxis 3: Research and analysis of data driven by Al

4. Dimensionality Reduction: Linear
Discriminant Analysis (LDA)

In case of uniformly distributed data, LDA almost always performs better than
PCA. However if the data is highly skewed (irregularly distributed) then it is
advised to use PCA since LDA can be biased towards the majority class.

from sklearn.discriminant_analysis import
LinearDiscriminantAnalysis

Ida = LinearDiscriminantAnalysis(n_components=2)
X_Ida = Ida.fit(X, Y).transform(X)
print("Examples = ",X_lda.shape ," Labels =", Y.shape)

Axis 3: Research and analysis of data driven by Al

5. Having an Imbalanced Dataset?

« The learning phase and the subsequent prediction of machine learning algorithms can
be affected by the problem of imbalanced data set. The balancing issue corresponds to
the difference of the number of samples in the different classes.

« imbalanced-learn is a python package offering a number of re-sampling techniques
commonly used in datasets showing strong between-class imbalance. It is compatible
with scikit-learn and is part of scikit-learn-contrib projects.

AXxis 3: Research and analysis of data driven by Al

5. Having an Imbalanced Dataset?

from imblearn.over_sampling import RandomOverSampler, SMOTE, ADASYN, BorderlineSMOTE,
SMOTENC

ros = RandomOverSampler(random_state=0)
X_resampled, y_resampled = ros.fit_resample(X, y)

X_resampled, y_resampled = SMOTE().fit_resample(X, y)
X _resampled, y resampled = ADASYN().fit_resample(X, y)

X_resampled, y_resampled = BorderlineSMOTE().fit_resample(X, y)

smote_nc = SMOTENC(categorical_features=[0], random_state=0) # categorical_features: Specified
which features are categorical
X _resampled, y resampled = smote nc.fit_resample(X, y)

Axis 3: Research and analysis of data driven by Al

6. Training and Test Sets: Splitting Data

from sklearn.model _selection import train_test_split
from sklearn import datasets
dat = datasets.load iris()
X = dat.data
Y = dat.target
print("Examples = ",X.shape ," Labels =", Y.shape)
stratify : If not None, data is split in a stratified fashion, using
this as the class labels.
X _train, X_test, Y_train, Y_test = train_test_split(X,
Y, test_size= 0.20, random_state=100, stratify=Y)
print("X train = ",X_train.shape ," Y test=",Y test.shape)

AXxis 3: Research and analysis of data driven by Al

6. Training and Test Sets: Splitting Data

import pandas as pd
from sklearn.model_selection import train_test_split

dataframe = pd.read_csv("“Iris_Dataset.csv")

split into input and output elements

dataframe[“species™] = dataframe["species”].map({"Iris-setosa":0,"Iris-versicolor":1,
"Iris-virginica":2})

X = dataframe.drop(["species"],axis=1).values

Y = dataframe["species™].values

print("X: ",X.shape, " Y: ",y.shape)

split into train test sets
X_train, X_test, Y_train, Y_test = train_test_split(X,
Y, test_size= 0.20, random_state=100, stratify=Y)

print("X_train = ",X_train.shape ," Y_train =", Y_train.shape)
print("X_test =" X test.shape ," Y_test =", Y_test.shape)

AXxis 3: Research and analysis of data driven by Al

Thank you for your
Attention

