
Data Preprocessing
Feature Selection

Scikit Learn

 2

statement or definition on our data set which is very important.
T hrough t he process of E DA , w e c a n a s k t o d e f in e th e p r o b l e m
a n d m a n y m o r e . I t o f t e n t a k e s m u c h t i m e t o e x p l o r e t h e d a t a .
• Plotting in EDA consists of Histograms, Box plot, Scatter plot

the data in order to apply Machine learning.
• This step is very important especially when we arrive at modeling

visually.
sets by summarizing their main characteristics often plotting them
• Exploratory Data A nalysis or (EDA) is understanding the data
Analysis
2. Data Preprocessing: Explorator y Data

 3

 2. Data Preprocessing: Explorator y Data Anal ysis

2. Data Preprocessing: Exploratory Data
Analysis

Prescriptive

What

action

should

we

take?

What

happened? Why

did

it

happen? What

is

likely

to

happen?

PredictiveDiagnostic

Descriptive

2. Data Preprocessing: Measures of
Central Tendency

 6

2. Data Preprocessing: Measures of
Dispersion

7

The

sklearn.preprocessing

package

provides

several

common

utility

functions

and

transformer

classes

to

change

raw

feature

vectors

into

a

representation

that

is

more

suitable

for

the

downstream

estimators.

1) Standardization
2) Normalization
3) Encoding

categorical

features

4) Discretization
5) Generating

polynomial

features

6) Custom

transformers

3. Feature Selection: Preprocessing

8

3. Feature Selection: Preprocessing
1.

Standardization:

is

a

scaling

technique

where

the

values

are

centered

around

the

mean

with

a

unit

standard

deviation.

This

means

that

the

mean

of

the

attribute

becomes

zero

and

the

resultant

distribution

has

a

unit

standard

deviation.
The

standard

score

of

a

sample

x

is

calculated

as:

z

=

(x

–

u)

/

s

x

=

variable
u

=

mean
s

=

standard

deviation

3. Feature Selection: 1. Standardization -
StandardScaler

from

sklearn.preprocessing

import

StandardScaler
import

numpy

as

np

X_train

=

np.array([[

1.,

-1.,

2.],

[

2.,

0.,

0.],

[

0.,

1.,

-1.]])

scaler

=

StandardScaler().fit_transform(X_train)
print(scaler)

Out:
[[

0.

-1.22474487

1.33630621]

[

1.22474487

0.

-0.26726124]

[-1.22474487

1.22474487

-1.06904497]]

3. Feature Selection: 1. Standardization -
Scaling Features to a Range
import

numpy

as

np
from

sklearn

import

preprocessing
X_train

=

np.array([[

1.,

-1.,

2.],

[

2.,

0.,

0.],

[

0.,

1.,

-1.]])

#

Here

is

an

example

to

scale

a

data

matrix

to

the

[0,

1]

range:
print("[0,

1]

:

\n")
min_0_max_1_scaler

=

preprocessing.MinMaxScaler()
X_train_min_0_max_1

=

min_0_max_1_scaler.fit_transform(X_train)
print(X_train_min_0_max_1)

#

between

a

given

minimum

and

maximum

value
print("min

-

max

:

\n")
min_max_scaler

=

preprocessing.MinMaxScaler(feature_range=(0,

10))
X_train_minmax

=

min_max_scaler.fit_transform(X_train)
print(X_train_minmax)

#

scaling

in

a

way

that

the

training

data

lies

within

the

range

[-1,

1]
print("[-1,

1]

:

\n")
max_abs_scaler

=

preprocessing.MaxAbsScaler()
X_train_maxabs

=

max_abs_scaler.fit_transform(X_train)
print(X_train_maxabs)

3. Feature Selection: 1. Standardization - Scaling Data
with Outliers

If

your

data

contains

many

outliers,

scaling

using

the

mean

and

variance

of

the

data

is

l ikely

to

not

work

very

well .

In

these

cases,

you

can

use

robust_scale

and

RobustScaler

as

drop-in

replacements

instead.

They

use

more

robust

estimates

for

the

center

and

range

of

your

data.

import

numpy

as

np
from

sklearn

import

preprocessing

X_train

=

np.array([[

1.,

-1.,

2.],

[

2.,

0.,

0.],

[

0.,

1.,

-1.]])
scaler

=

preprocessing.RobustScaler()

X_train_rob_scal

=

scaler.fit_transform(X_train)
print(X_train_rob_scal)

3. Feature Selection: 1. Standardization

#

Save

the

scaler

from

pickle

import

dump

dump(scaler,

open("/content/scaler.pkl",

"wb"))

#

Load

the

scaler

from

pickle

import

load

my_scaler

=

load(open("/content/scaler.pkl",

"rb"))

scaler_result

=

my_scaler.transform(X_train)

print(scaler_result)

print(X_normalized)
X_normalized

=

preprocessing.normalize(X)
X

=

[[

1.,

-1.,

2.],

[

2.,

0.,

0.],

[

0.,

1.,

-1.]]

import

numpy

as

np
from

sklearn

import

preprocessing

clustering

contexts.
known

as

Min-Max

scaling.

It

often

used

in

text

classification

and

and

scaled

so

that

they

end

up

ranging

between

0

and

1.

It

is

also

 Normalization

is

a

scaling

technique

in

which

values

are

shifted

 3. Feature Selection: 2. Nor malization

cases where the data follows a Gaussian distribution.
S ta n dar d i za ti on , on t he ot h e r h a nd , ca n be h e l pf ul i n

Neighbors and Neural Networks.
a s s u m e a n y d i s t r i b u t i o n o f t h e d a t a l i k e K - N e a r e s t
di strib ution . T his can be use ful in al gorithms t hat d o not
di s t ri b ut i o n of yo ur da ta d oe s no t fo ll o w a Ga u ss ia n
No rmal ization is good t o use when you kno w t hat the

3. Feature Selection: 2. Nor malization

from

sklearn

import

preprocessing
#genders

=

['female',

'male']
#locations

=

['from

Africa',

'from

Asia',

'from

Europe',

'from

US']
#browsers

=

['uses

Chrome',

'uses

Firefox',

'uses

Safari']

X

=

[['male',

'from

US',

'uses

Safari'],

['female',

'from

Europe',

'uses

Safari'],

['female',

'from

Asia',

'uses

Firefox'],

['male',

'from

Africa',

'uses

Chrome']]
enc

=

preprocessing.OrdinalEncoder()
X_enc

=

enc.fit_transform(X)
print(X_enc)

[[1.

3.

2.]

[0.

2.

2.]

[0.

1.

1.]

[1.

0.

0.]]

new

feature

of

integers

(0

to

n_categories

-

1).
OrdinalEncoder.

This

estimator

transforms

each

categorical

feature

to

one

 To

c

o

n

v

e

r

t

c

a

t

e

g

o

r

i

c

a

l

f

e

a

t

u

r

e

s

t

o

s

u

c

h

i

n

t

e

g

e

r

c

o

d

e

s

,

w

e

c

a

n

u

s

e

t

h

e

 Categorical Features
3. Feature Selection: 3. Encoding

print(df.info())
df=

df.drop(["Date"],

axis=1)

df["day_of_year"]

=

df["Date"].dt.dayofyear
df["week_of_year"]

=

df["Date"].dt.weekofyear

df["day"]

=

df["Date"].dt.day
df["month"]

=

df["Date"].dt.month

df["year"]

=

df["Date"].dt.year

df["Date"]

=

pd.to_datetime(df["Date"])

time,

hour,

minute,

second,

day_part)

from

the

given

date-time

variable.
part

(year,

quarter,

month,

day,

day_of_week,

day_of_year,

week_of_year,

 Datetime

Feature

Engineering:

we

can

extract

the

component

of

the

date-time

Categorical Features
3. Feature Selection: 3. Encoding

3. Feature Selection: 4. Encoding
Categorical Labels
Label

Encoding

(LabelEncoder)

is

a

popular

encoding

technique

for

handling

categorical

variables.

In

this

technique,

each

label

is

assigned

a

unique

integer

based

on

alphabetical

orderingwith

value

between

0

and

n_classes-1.

#

Encoding

Categorical

Labels
from

sklearn

import

preprocessing

labels

=

["India",

"US",

"Japan",

"US",

"Japan"]
le

=

preprocessing.LabelEncoder()
new_labels

=

le.fit_transform(labels)

print(new_labels)

print("inverse_transform

:

\n",

le.inverse_transform([2,

0,

1]))

The

country

names

do

not

have

an

order

or

rank .

But,

when

label

encoding

is

performed,

the

country

names

are

ranked

based

on

the

alphabets.

Due

to

this,

there

is

a

very

high

probability

that

the

model

captures

the

relationship

between

countries

such

as

India

<

Japan

<

US.

3. Feature Selection: 4. Encoding
Categorical Labels

One-Hot

Encoding

is

another

popular

technique

for

treating

categorical

variables.

It

simply

creates

additional

features

based

on

the

number

of

unique

values

in

the

categorical

feature.

Every

unique

value

in

the

category

will

be

added

as

a

feature.

3. Feature Selection: 4. Encoding
Categorical Labels

#

Importing

one

hot

encoder

from

sklearn.preprocessing

import

OneHotEncoder

#

Creating

one

hot

encoder

object

onehotencoder

=

OneHotEncoder()

#

Reshape

the

1-D

country

array

to

2-D

as

fit_transform

expects

2-D

and

finally

fit

the

object

X

=

onehotencoder.fit_transform(my_data.Country.values.reshape(-

1,1)).toarray()
print(X)

3. Feature Selection: 5. Discretization
Discretization

(otherwise

known

as

quantization

or

binning)

provides

a

way

to

partition

continuous

features

into

discrete

values.

3. Feature Selection: 5. Discretization

from

sklearn

import

preprocessing
import

numpy

as

np
X

=

np.array([[

-3.,

5.,

15

],

[

0.,

6.,

14

],

[

6.,

3.,

11

]])
#

'onehot’,

‘onehot-dense’,

‘ordinal’
kbd

=

preprocessing.KBinsDiscretizer(n_bins=[3,

2,

2],

encode='ordinal')

X_kbd

=

kbd.fit_transform(X)
print(X_kbd)

3. Feature Selection: 5.1 Feature
Binarization
from

sklearn

import

preprocessing

import

numpy

as

np

X

=

[[

1.,

-1.,

2.],[

2.,

0.,

0.],[

0.,

1.,

-1.]]

binarizer

=

preprocessing.Binarizer()

X_bin

=

binarizer.fit_transform(X)

print(X_bin)

#

It

is

possible

to

adjust

the

threshold

of

the

binarizer:

binarizer_1

=

preprocessing.Binarizer(threshold=1.1)

X_bin_1

=

binarizer_1.fit_transform(X)

print(X_bin_1)

3. Feature Selection: 6. Generating
Polynomial Features
Often

it

is

useful

to

add

complexity

to

the

model

by

considering

nonlinear

features

of

the

input

data.

A

simple

and

common

method

to

use

is

polynomial

features,

which

can

get

features’

high-order

and

interaction

terms.

It

is

implemented

in

PolynomialFeatures.

for

2

features

:

3. Feature Selection: 6. Generating
Polynomial Features
from

sklearn

import

preprocessing

import

numpy

as

np

X

=

np.arange(9).reshape(3,

3)

print(X)
poly

=

preprocessing.PolynomialFeatures(degree=3,

interaction_only=True)

X_poly

=

poly.fit_transform(X)

print(X_poly)

3. Feature Selection: 7. Custom
Transformers
Often,

you

will

want

to

convert

an

existing

Python

function

into

a

transformer

to

assist

in

data

cleaning

or

processing.

You

can

implement

a

transformer

from

an

arbitrary

function

with

FunctionTransformer.

For

example,

to

build

a

transformer

that

applies

a

log

transformation

in

a

pipeline,

do:

from

sklearn

import

preprocessing

import

numpy

as

np

transformer

=

preprocessing.FunctionTransformer(np.log1p,

validate=True)
X

=

np.array([[0,

1],

[2,

3]])

X_tr

=

transformer.fit_transform(X)

print(X_tr)

3. Feature Selection: Text Feature

scikit-learn

provides

utilities

for

the

most

common

ways

to

extract

numerical

features

from

text

content,

namely:

•

Tokenizing

strings

and

giving

an

integer

id

for

each

possible

token,

for

instance

by

using

white-spaces

and

punctuation

as

token

separators.

•

Counting

the

occurrences

of

tokens

in

each

document.

•

Normalizing

and

weighting

with

diminishing

importance

tokens

that

occur

in

the

majority

of

samples

/

documents.

3. Feature Selection: Text Feature

A

simple

way

we

can

convert

text

to

numeric

feature

is

via

binary

encoding.

In

this

scheme,

we

create

a

vocabulary

by

looking

at

each

distinct

word

in

the

whole

dataset

(corpus).

For

each

document,

the

output

of

this

scheme

will

be

a

vector

of

size

N

where

N

is

the

total

number

of

words

in

our

vocabulary.

Initially

all

entries

in

the

vector

will

be

0.

If

the

word

in

the

given

document

exists

in

the

vocabulary

then

vector

element

at

that

position

is

set

to

1.

CountVectorizer

implements

both

tokenization

and

occurrence

counting

in

a

single

class.

from

sklearn.feature_extraction.text

import

CountVectorizer
texts

=

[

"blue

car

and

blue

window",

"black

crow

in

the

window",

"i

see

my

reflection

in

the

window"
]
vec

=

CountVectorizer(binary=True)
vec.fit(texts)
print([w

for

w

in

sorted(vec.vocabulary_.keys())])
X

=

vec.transform(texts).toarray()
print(X)

import

pandas

as

pd
pd.DataFrame(vec.transform(texts).toarray(),

columns=sorted(vec.vocabulary_.keys()))

3. Feature Selection: Text Feature

3. Feature Selection: Text Feature
Counting

is

another

approach

to

represent

text

as

a

numeric

feature.

It

is

similar

to

Binary

scheme

that

we

saw

earlier

but

instead

of

just

checking

if

a

word

exists

or

not,

it

also

checks

how

many

times

a

word

appeared.

vec

=

CountVectorizer(binary=False)

3. Feature Selection: Text Feature

TF-IDF

stands

for

term

frequency-inverse

document

frequency.

We

saw

that

Counting

approach

assigns

weights

to

the

words

based

on

their

frequency

and

it’s

obvious

that

frequently

occurring

words

will

have

higher

weights.

But

these

words

might

not

be

important

as

other

words.

For

example,

let’s

consider

an

article

about

Travel

and

another

about

Politics.

Both

of

these

articles

will

contain

words

like

a,

the

frequently.

But

words

such

as

flight,

holiday

will

occur

mostly

in

Travel

and

parliament,

court

etc.

will

appear

mostly

in

Politics.

Even

though

these

words

appear

less

frequently

than

the

others,

they

are

more

important.

TF-IDF

assigns

more

weight

to

less

frequently

occurring

words

rather

than

frequently

occurring

ones.

It

is

based

on

the

assumption

that

less

frequently

occurring

words

are

more

important.

3. Feature Selection: Text Feature
from

sklearn.feature_extraction.text

import

TfidfVectorizer
texts

=

[

"blue

car

and

blue

window",

"black

crow

in

the

window",

"i

see

my

reflection

in

the

window"
]

vec

=

TfidfVectorizer()
vec.fit(texts)
print([w

for

w

in

sorted(vec.vocabulary_.keys())])
X

=

vec.transform(texts).toarray()
import

pandas

as

pd
pd.DataFrame(vec.transform(texts).toarray(),

columns=sorted(vec.vocabulary_.keys()))

3. Feature Selection: Image Feature
#

image.extract_patches_2d

from

sklearn.feature_extraction

import

image
from

sklearn.datasets

import

fetch_olivetti_faces
import

matplotlib.pyplot

as

plt

import

matplotlib.image

as

img

data

=

fetch_olivetti_faces()
plt.imshow(data.images[0])

#

patches

=

image.extract_patches_2d(data.images[0],

(3,

3),

max_patches=2,random_state=0)
patches

=

image.extract_patches_2d(data.images[0],

(3,

3))
print("Image

shape:

",

data.images[0].shape,

"

Patches

shape:

",

patches.shape)
print("Patches

:

\n",len(patches.flatten()))

3. Feature Selection: Image Feature

import

cv2
def

hu_moments(image):

image

=

cv2.cvtColor(image,

cv2.COLOR_BGR2GRAY)

feature

=

cv2.HuMoments(cv2.moments(image)).flatten()

return

feature

def

histogram(image,mask=None):

image

=

cv2.cvtColor(image,

cv2.COLOR_BGR2HSV)

hist

=

cv2.calcHist([image],[0],None,[256],[0,256])

cv2.normalize(hist,

hist)

return

hist.flatten()

3. Feature Selection: Image Feature
import

mahotas
def

haralick_moments(image):

#image

=

cv2.cvtColor(image,

cv2.COLOR_BGR2GRAY)

image

=

image.astype(int)

haralick

=

mahotas.features.haralick(image).mean(axis=0)

return

haralick

class

ZernikeMoments:
def

__init__(self,

radius):
#

store

the

size

of

the

radius

that

will

be
#

used

when

computing

moments
self.radius

=

radius

def

describe(self,

image):
#

return

the

Zernike

moments

for

the

image
return

mahotas.features.zernike_moments(image,

self.radius)

3. Feature Selection: Image Feature
import

cv2
import

mahotas
import

numpy

as

np
from

sklearn.datasets

import

fetch_olivetti_faces
import

matplotlib.pyplot

as

plt

data

=

fetch_olivetti_faces()
plt.imshow(data.images[0])

hu_mot

=

hu_moments(data.images[0])
print("hu_mot

:

",

len(hu_mot),"\n",hu_mot)

hist

=

histogram(data.images[0])
print("hist

:

",

len(hist),"\n",hist)

haralick

=

haralick_moments(data.images[0])
print("haralick

:

",

len(haralick),"\n",haralick)

desc

=

ZernikeMoments(21)
zernike

=

desc.describe(data.images[0])
print("zernike

:

",

len(zernike),"\n",zernike)

3. Feature Selection: Image Feature

from

silx.opencl

import

sift

sift_ocl

=

sift.SiftPlan(template=img,

devicetype="GPU")

keypoints

=

sift_ocl.keypoints(img)

3. Feature Selection: Image Feature
!pip

install

mediapipe
!pip

install

cvzone
#

https://github.com/cvzone/cvzone

from

cvzone.FaceMeshModule

import

FaceMeshDetector
import

cv2

img

=

cv2.imread("/content/1.jpg")
detector

=

FaceMeshDetector(maxFaces=2)

img,

faces

=

detector.findFaceMesh(img)
if

faces:

print(faces[0])

cv2_imshow(img)

Face

Landmark

4. Dimensionality Reduction: Principal
Component Analysis (PCA)

Principal

Component

Analysis

(PCA)

is

a

statistical

method

that

creates

new

features

or

characteristics

of

data

by

analyzing

the

characteristics

of

the

dataset.

Essentially,

the

characteristics

of

the

data

are

summarized

or

combined

together.

You

can

also

conceive

of

Principal

Component

Analys is

as

"squishing"

data

down

into

just

a

few

dimensions

from

much

higher

dimensions

space.

from

sklearn

import

datasets

from

sklearn.decomposition

import

PCA

dat

=

datasets.load_breast_cancer()

X,

Y

=

dat.data,

dat.target

print("Examples

=

",X.shape

,"

Labels

=

",

Y.shape)

pca

=

PCA(n_components

=

5)

X_pca

=

pca.fit_transform(X)

print("Examples_PCA

=

",X_pca.shape

,"

Labels

=

",

Y.shape)

4. Dimensionality Reduction: Principal
Component Analysis (PCA)

4. Dimensionality Reduction: Kernel
Principal Component Analysis (KPCA)
Non-linear

dimensionality

reduction

through

the

use

of

kernels.

from

sklearn

import

datasets
from

sklearn.decomposition

import

KernelPCA

dat

=

datasets.load_breast_cancer()
X,

Y

=

dat.data,

dat.target
print("Examples

=

",X.shape

,"

Labels

=

",

Y.shape)
#

kernel

:

"linear"

|

"poly"

|

"rbf"

|

"sigmoid"

|

"cosine"

|

"precomputed"
kpca

=

KernelPCA(n_components=7,

kernel='rbf')
X_kpca

=

kpca.fit_transform(X)
print("Examples

=

",X_kpca.shape

,"

Labels

=

",

Y.shape)

4. Dimensionality Reduction: PCA VS
KPCA

4. Dimensionality Reduction: Linear
Discriminant Analysis (LDA)
In

case

of

uniformly

distributed

data,

LDA

almost

always

performs

better

than

PCA.

However

if

the

data

is

highly

skewed

(irregularly

distributed)

then

it

is

advised

to

use

PCA

since

LDA

can

be

biased

towards

the

majority

class.

from

sklearn.discriminant_analysis

import

LinearDiscriminantAnalysis

lda

=

LinearDiscriminantAnalysis(n_components=2)
X_lda

=

lda.fit(X,

Y).transform(X)
print("Examples

=

",X_lda.shape

,"

Labels

=

",

Y.shape)

5. Having an Imbalanced Dataset?
•

The

learning

phase

and

the

subsequent

prediction

of

machine

learning

algorithms

can

be

affected

by

the

problem

of

imbalanced

data

set.

The

balancing

issue

corresponds

to

the

difference

of

the

number

of

samples

in

the

different

classes.

•

imbalanced-learn

is

a

python

package

offering

a

number

of

re-sampling

techniques

commonly

used

in

datasets

showing

strong

between-class

imbalance.

It

is

compatible

with

scikit-learn

and

is

part

of

scikit-learn-contrib

projects.

5. Having an Imbalanced Dataset?
from

imblearn.over_sampling

import

RandomOverSampler,

SMOTE,

ADASYN,

BorderlineSMOTE,

SMOTENC

"""
ros

=

RandomOverSampler(random_state=0)
X_resampled,

y_resampled

=

ros.fit_resample(X,

y)
"""

X_resampled,

y_resampled

=

SMOTE().fit_resample(X,

y)

#

X_resampled,

y_resampled

=

ADASYN().fit_resample(X,

y)

#

X_resampled,

y_resampled

=

BorderlineSMOTE().fit_resample(X,

y)

"""
smote_nc

=

SMOTENC(categorical_features=[0],

random_state=0)

#

categorical_features:

Specified

which

features

are

categorical
X_resampled,

y_resampled

=

smote_nc.fit_resample(X,

y)
"""

6. Training and Test Sets: Splitting Data
from

sklearn.model_selection

import

train_test_split

from

sklearn

import

datasets

dat

=

datasets.load_iris()

X

=

dat.data

Y

=

dat.target

print("Examples

=

",X.shape

,"

Labels

=

",

Y.shape)

#

stratify

:

If

not

None,

data

is

split

in

a

stratified

fashion,

using

this

as

the

class

labels.

X_train,

X_test,

Y_train,

Y_test

=

train_test_split(X,

Y,

test_size=

0.20,

random_state=100,

stratify=Y)

print("X_train

=

",X_train.shape

,"

Y_test

=

",

Y_test.shape)

6. Training and Test Sets: Splitting Data
import

pandas

as

pd

from

sklearn.model_selection

import

train_test_split

dataframe

=

pd.read_csv("Iris_Dataset.csv")

#

split

into

input

and

output

elements

dataframe["species"]

=

dataframe["species"].map({"Iris-setosa":0,"Iris-versicolor":1,

"Iris-virginica":2})
X

=

dataframe.drop(["species"],axis=1).values

Y

=

dataframe["species"].values

print("X:

",X.shape,

"

Y:

",y.shape)

#

split

into

train

test

sets

X_train,

X_test,

Y_train,

Y_test

=

train_test_split(X,

Y,

test_size=

0.20,

random_state=100,

stratify=Y)

print("X_train

=

",X_train.shape

,"

Y_train

=

",

Y_train.shape)

print("X_test

=

",X_test.shape

,"

Y_test

=

",

Y_test.shape)

Attention
Thank you for your

