[1]:

[10]:

Untitled43

November 4, 2025

from sklearn.preprocessing import StandardScaler

import numpy as np

X_train = np.array([[1., -1., 2.1, [2., 0., 0.1, [0., 1., -1.11)
scaler = StandardScaler().fit_transform(X_train)

print(scaler)

[[o. -1.22474487 1.33630621]
[1.22474487 O. -0.26726124]
[-1.

22474487 1.22474487 -1.06904497]]

from sklearn import preprocessing
import numpy as np

Example data matriz (you can replace this with your own)
X_train = np.array([

[1.0, -1.0, 2.0],

(2.0, 0.0, 0.0],

[0.0, 1.0, -1.0]
D

Scaling to [0, 1] range

print (" [0, 1] scaling:\n")

min_O_max_1_scaler = preprocessing.MinMaxScaler ()
X_train_min_O_max_1 = min_O_max_1_scaler.fit_transform(X_train)
print(X_train_min_O_max_1)

Scaling between a given minimum and maximum value (e.g., [0, 10])
print("\n[0, 10] scaling:\n")

min_max_scaler = preprocessing.MinMaxScaler(feature_range=(0, 10))
X_train_minmax = min_max_scaler.fit_transform(X_train)
print(X_train_minmax)

Scaling so that the training data lies within the range [-1, 1]
print("\n[-1, 1] scaling:\n")

max_abs_scaler = preprocessing.MaxAbsScaler()

X_train_maxabs = max_abs_scaler.fit_transform(X_train)
print(X_train_maxabs)

[0, 1] scaling:

[[0.5 0. 1.]
[1. 0.5 0.33333333]
[0. 1. 0. 1]

[0, 10] scaling:

[[5. 0. 10. 1
[10. 5. 3.33333333]
[0. 10. 0. 1]

[-1, 1] scaling:

[[0.5 -1. 1.]
[1. 0. 0.1
[o. 1. -0.5]]

[12]: import numpy as np
from sklearn import preprocessing
X_train = np.array([[1., -1., 2.1, [2., 0., 0.1, [O., 1., -1.1])
scaler = preprocessing.RobustScaler()
X_train_rob_scal = scaler.fit_transform(X_train)
print(X_train_rob_scal)

[[o. -1. 1.33333333]
[1. . 0.]
[-1. 1. -0.66666667]]

[16]: from sklearn import preprocessing
import numpy as np
X = np.array([[1., -1., 2.1, [2., 0., 0.1, [0., 1., -1.11)
X_normalized = preprocessing.normalize(X)
print(X_normalized)

[[0.40824829 -0.40824829 0.81649658]
[1. 0. 0. 1
[0. 0.70710678 -0.70710678]]

[18]: from sklearn import preprocessing

Define possible categories

genders = ['female', 'male']
locations = ['from Africa', 'from Asia', 'from Europe', 'from US']
browsers = ['uses Chrome', 'uses Firefox', 'uses Safari']

Sample data
X=1
['male', 'from US', 'uses Safari'l],

['female', 'from Europe', 'uses Safari'],
['female', 'from Asia', 'uses Firefox'],
['male', 'from Africa', 'uses Chrome']

Create and fit an OrdinalEncoder
enc = preprocessing.0OrdinalEncoder ()
X_enc = enc.fit_transform(X)

print("Encoded data:\n", X_enc)
print("\nCategories used by encoder:\n", enc.categories_)

Encoded data:

[[1. 3. 2.]
0. 2. 2.1
0. 1. 1.1
[1. 0. 0.]]

Categories used by encoder:

larray(['female', 'male'], dtype=object), array(['from Africa', 'from Asia',
'from Europe', 'from US'], dtype=object), array(['uses Chrome', 'uses Firefox',
'uses Safari'], dtype=object)]

[20] : import pandas as pd

Ezample data
df = pd.DataFrame ({

"Date": ["2024-12-01", "2025-01-15", "2025-03-20"]
)

Convert 'Date' to datetime
df ["Date"] = pd.to_datetime(df["Date"])

Extract features

df ["year"] = df["Date"].dt.year

df ["month"] = df["Date"].dt.month

df ["day"] = df["Date"].dt.day

df ["week_of_year"] = df["Date"].dt.isocalendar() .week # modern replacement
df ["day_of_year"] = df["Date"].dt.dayofyear

Drop original Date column
df = df .drop(["Date"], axis=1)

Show result
print(df.info())
print (df)

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 3 entries, 0 to 2
Data columns (total 5 columns):

Column Non-Null Count Dtype
0 year 3 non-null int32
1 month 3 non-null int32
2 day 3 non-null int32
3 week_of_year 3 non-null UInt32
4 day_of_year 3 non-null int32

dtypes: UInt32(1), int32(4)
memory usage: 195.0 bytes

None

year month day week_of_year day_of_year
0 2024 12 1 48 336
1 2025 1 15 3 15
2 2025 3 20 12 79

[24]: from sklearn import preprocessing

Original categorical labels
labels = ["India", "US", "Japan"]

Create the LabelEncoder
le = preprocessing.LabelEncoder()

Fit and transform labels into numbers
new_labels = le.fit_transform(labels)

Show encoded labels
print("Encoded labels:\n", new_labels)

Decode some numeric labels back to original text
print("\nInverse transform:\n", le.inverse_transform([2, 0, 1]))

Encoded labels:
[0 2 1]

Inverse transform:
['US' 'India' 'Japan']

[32]: # Import OneHotEncoder from scikit-learn
from sklearn.preprocessing import OneHotEncoder
import pandas as pd

df = pd.read_csv('cars.csv')
Create a OneHotEncoder object
onehotencoder = OneHotEncoder ()

Reshape the 1-D 'Country' array to 2-D as fit_transform expects 2-D
Then fit and transform the data
X = onehotencoder.fit_transform(df['model'] .values.reshape(-1, 1)).toarray()

Print the result

print (X)

[[0. 0. 0. ... 0. 0. 0.]
(0. 0. 0. ... 0. 0. 0.]
(0. 0. 0. ... 0. 1. 0.]
[0. 0. 0. ... 0. 0. 0.]
(0. 0. 0. ... 0. 0. 0.
(0. 0. 0. ... 0. 0. 0.]]

[34]: from sklearn import preprocessing
import numpy as np

Sample data

X = np.array([
[-3., 5., 15.1,
[0., 6., 14.1,
[6., 3., 11.]

D

Create KBinsDiscretizer object

n_bins specifies the number of bins per feature

encode='ordinal' means each bin is encoded as an integer

kbd = preprocessing.KBinsDiscretizer(n_bins=[3, 2, 2], encode='ordinal',
—sStrategy='uniform')

Fit and transform the data
X_kbd = kbd.fit_transform(X)

Print the discretized output
print (X_kbd)

[[0. 1. 1.]
[1. 1. 1.]
[2. 0. 0.]1]

C:\Users\Thinkpad\anaconda3\Lib\site-
packages\sklearn\preprocessing_discretization.py:248: FutureWarning: In version
1.5 onwards, subsample=200_000 will be used by default. Set subsample explicitly
to silence this warning in the mean time. Set subsample=None to disable
subsampling explicitly.

warnings.warn(

[36]: from sklearn import preprocessing
import numpy as np

Sample data

X=1[[r., -1., 2.1,
(2., 0., 0.1,
0., 1., -1.11

Default Binarizer (threshold=0)

binarizer = preprocessing.Binarizer()

X_bin = binarizer.fit_transform(X)

print ("Binarized with threshold=0:\n", X_bin)

Binarizer with custom threshold

binarizer_1 = preprocessing.Binarizer (threshold=1.1)
X_bin_1 = binarizer_1.fit_transform(X)
print("\nBinarized with threshold=1.1:\n", X_bin_1)

Binarized with threshold=0:

[[1. 0. 1.]
[1. 0. 0.]
0. 1. 0.1]

Binarized with threshold=1.1:

[[0. 0. 1.]
[1. 0. 0.]
[0. 0. 0.1]

[2]: from sklearn import preprocessing
import numpy as np
X=np.arange(9) .reshape(3,3)
print (X)
poly=preprocessing.PolynomialFeatures(degree=3,

interaction_only=True)

X_poly=poly.fit_transform(X)
print (X_poly)

(o1 2]
[3 4 5]
(6 7 8]]
[C 1. 0. 1. 2. 0. 0. 2. 0.]
[1. 3. 4. 5. 12. 15. 20. 60.]
[1. 6. 7. 8. 42. 48. 56. 336.]]

[4]: from sklearn import preprocessing
import numpy as np
transformer = preprocessing.FunctionTransformer (np.loglp, validate=True)
X = np.array([[0, 1], [2, 3]])

[6]:

[12]:

X_tr = transformer.fit_transform(X)
print (X_tr)

[[O. 0.69314718]
[1.09861229 1.38629436]]

from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd

texts = [
"blue car and blue window",
"black crow in the window",
"i see my reflection in the window"

Create a Count Vectorizer that encodes presence/absence of words
vec = CountVectorizer (binary=True)

Fit the wectorizer to the texts
vec.fit (texts)

Print the sorted wvocabulary
print([w for w in sorted(vec.vocabulary_.keys())])

Transform texts into binary wvectors
X = vec.transform(texts) .toarray()
print (X)

Create a DataFrame for better wisualization
df = pd.DataFrame(X, columns=sorted(vec.vocabulary_.keys()))
print (df)

['and', 'black', 'blue', 'car', 'crow', 'in', 'my', 'reflection', 'see',

'window']
[[1011000000 1]
(0100110001 1]
(000001111 11]]
and black blue car crow in my reflection see the window

0 1 0 1 1 0 0 ©0 0 0 0 1
1 0 1 0 0 1 1 0 0 0 1 1
2 0 0 0 0 0 1 1 1 1 1 1

from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd

texts = [
"blue car and blue window",
"black crow in the window",

'the',

[14]:

"i see my reflection in the window"

Create a Count Vectorizer that encodes presence/absence of words
vec = CountVectorizer(binary=False)

Fit the wectorizer to the texts
vec.fit (texts)

Print the sorted wvocabulary
print([w for w in sorted(vec.vocabulary_.keys())])

Transform texts into binary vectors
X = vec.transform(texts) .toarray()
print (X)

Create a DataFrame for better wisualization
df = pd.DataFrame(X, columns=sorted(vec.vocabulary_.keys()))
print(df)

['and', 'black', 'blue', 'car', 'crow', 'in', 'my', 'reflection', 'see',
'window']

[[1 021000000 1]

[01 00110001 1]

[00000111111]]

and black blue car crow in my reflection see the window

0 1 0 2 1 0O 0 O 0 0 0 1
1 0 1 0 0 1 1 0 0 0 1 1
2 0 0 0 0 0 1 1 1 1 1 1

from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd

texts = [
"blue car and blue window",
"black crow in the window",
"i see my reflection in the window"

Create a TF-IDF wectorizer
vec = TfidfVectorizer()

Fit the vectorizer to the texts
vec.fit (texts)

Print the sorted wvocabulary
print([w for w in sorted(vec.vocabulary_.keys())])

'"the',

Transform texts into TF-IDF wectors
X = vec.transform(texts) .toarray()
print (X)

Create a DataFrame for better wisualization
df = pd.DataFrame(X, columns=sorted(vec.vocabulary_.keys()))

print(df)
['and', 'black', 'blue', 'car', 'crow', 'in', 'my', 'reflection', 'see', 'the',
'window']
[[0.39687454 0 0.79374908 0.39687454 0. 0.
0. 0. 0. 0. 0.2344005]
(0. 0.53409337 0. 0. 0.53409337 0.40619178
0. 0. 0. 0.40619178 0.31544415]
[0. 0. 0. 0. 0. 0.35829137
0.4711101 0.4711101 0.4711101 0.35829137 0.27824521]]
and black blue car crow in my \
0 0.396875 0.000000 0.793749 0.396875 0.000000 0.000000 0.00000
1 0.000000 0.534093 0.000000 0.000000 0.534093 0.406192 0.00000
2 0.000000 0.000000 0.000000 0.000000 0.000000 0.358291 0.47111
reflection see the window
0 0.00000 0.00000 0.000000 0.234400
1 0.00000 0.00000 0.406192 0.315444
2 0.47111 0.47111 0.358291 0.278245

[16]: from sklearn.feature_extraction import image
from sklearn.datasets import fetch_olivetti_faces
import matplotlib.pyplot as plt

Load the Olivettt: faces dataset
data = fetch_olivetti_faces()

Show the first image
plt.imshow(data.images[0], cmap='gray')
plt.title("Original Image")

plt.show()

Extract 3z3 patches from the first image
patches = image.extract_patches_2d(data.images[0], (3, 3))

print("Image shape:", data.images[0].shape)
print ("Patches shape:", patches.shape)
print ("Number of elements in all patches:", len(patches.flatten()))

downloading Olivetti faces from https://ndownloader.figshare.com/files/5976027
to C:\Users\Thinkpad\scikit_learn_data

Original Image

Image shape: (64, 64)
Patches shape: (3844, 3, 3)
Number of elements in all patches: 34596

[28]: import cv2
import numpy as np

Function to compute Hu Moments
def hu_moments(image) :
Convert image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
Compute moments
moments = cv2.moments(gray)
Compute Hu Moments and flatten into a 1D array
hu = cv2.HuMoments (moments) .flatten()
return hu

Function to compute histogram
def histogram(image, mask=None):
Convert image to HSV
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

10

Compute histogram for the Hue channel

hist = cv2.calcHist([hsv], [0], mask, [256], [0, 256])
Normalize the histogram

cv2.normalize(hist, hist)

return hist.flatten()

import cv2
import mahotas
import numpy as np

Function to compute Haralick texture features
def haralick_moments(image) :
Convert image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
Convert to integer type as required by mahotas
gray = gray.astype(np.uint8)
Compute Haralick features and take the mean across directions
haralick = mahotas.features.haralick(gray) .mean(axis=0)
return haralick

Class to compute Zernike moments
class ZernikeMoments:
def __init__(self, radius):

nnn

Store the radius that will be used when computing Zernike moments.

ninn

self.radius = radius

def describe(self, image):
niamn
Return the Zernike moments for the image.
Note: image should be grayscale and tdeally centered within a square,
—mask.
Ensure the image ©s grayscale
if len(image.shape) ==
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
Convert to uint8 as required by mahotas
image = image.astype(np.uint8)
return mahotas.features.zernike_moments(image, self.radius)

[30]: import cv2
import mahotas
import numpy as np
from sklearn.datasets import fetch_olivetti_faces
import matplotlib.pyplot as plt
from mahotas.features import zernike_moments, haralick

11

Load the Olivetti faces dataset
data = fetch_olivetti_faces()
image = data.images[0]

plt.imshow(image, cmap='gray')
plt.title("0Olivetti Face Sample")
plt.axis('off")

plt.show()

--- Hu Moments ---

def hu_moments(image) :
moments = cv2.moments (image)
hu = cv2.HuMoments (moments) .flatten()
return hu

hu_mot = hu_moments(image)
print ("Hu Moments ({}):\n".format(len(hu_mot)), hu_mot)

--- Histogram (normalized 256-bin) ---

def histogram(image):
hist = cv2.calcHist([image.astype(np.uint8)], [0], None, [256], [0, 256])
hist = cv2.normalize(hist, hist).flatten()
return hist

hist = histogram(image)
print("\nHistogram ({}):\n".format(len(hist)), hist)

--- Haralick Features ---

def haralick_moments(image) :
har = mahotas.features.haralick(image.astype(np.uint8)) .mean(axis=0)
return har

haralick_feats = haralick_moments(image)
print("\nHaralick ({}):\n".format(len(haralick_feats)), haralick_feats)

--- Zernike Moments ---
def zernike_moments(image, radius=21):
Convert to binary for Zernike computation
thresh = image > image.mean()
zern = mahotas.features.zernike_moments(thresh.astype(np.uint8), radius)
return zern

zernike_feats = zernike_moments (image)
print("\nZernike ({}):\n".format(len(zernike_feats)), zernike_feats)

12

Olivetti Face Sample

Hu Moments (7):
[2.44346111e-01 1.09110661e-04 5.17020161e-05 3.76399586e-06
1.40892052e-11 1.16310230e-08 5.05826981e-11]

Histogram (256):
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0.0.0.0.0.0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0.0.0.0.60.60.60.0.0.0.0.0.0
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0.0.0.0.60.60.60.0.0.0.0.0.0
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0.0.0.0.60.60.60.0.0.0.0.0.0
0. 0. 0.0
0. 0.0
0. 0.0
0. 0.0
0. 0.0
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0.0.0.0.60.60.0.0.0.0.0.0.0
0. 0. 0.0.0.0.0.0.0.0.0.0.0.0.0.0.]

Haralick (13):
[1. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]

Zernike (25):

[0.31830989 0.01890163 0.06481972 0.0633957 0.02584877 0.12966706
0.03554216 0.01836268 0.05732032 0.04925423 0.04822797 0.07821339

13

[40] :

[44] :

[46] :

0.03389148 0.0193667 0.07146486 0.01171312 0.03826596 0.03583074
0.07708602 0.04074665 0.02787281 0.01661538 0.06716495 0.02689876
0.01687837]

from silx.opencl import sift
sift_ocl=sift.SiftPlan(template=image)
keypoints=sift_ocl.keypoints(image)

C:\Users\Thinkpad\anaconda3\Lib\site-packages\pyopencl\cache.py:420:
CompilerWarning: Non-empty compiler output encountered. Set the environment
variable PYOPENCL_COMPILER_QUTPUT=1 to see more.

prg.build(options_bytes, [devices[i] for i in to_be_built_indices])

from sklearn import datasets
from sklearn.decomposition import PCA

Load the breast cancer dataset
dat = datasets.load_breast_cancer()
X, Y = dat.data, dat.target

Show dataset shapes
print ("Examples =", X.shape, "Labels =", Y.shape)

Apply PCA (reduce to 5 components)
pca = PCA(n_components=5)
X_pca = pca.fit_transform(X)

Show transformed shapes
print ("Examples_PCA =", X_pca.shape, "Labels =", Y.shape)

Examples = (569, 30) Labels = (569,)
Examples_PCA = (569, 5) Labels = (569,)

from sklearn import datasets
from sklearn.decomposition import KernelPCA

Load breast cancer dataset
dat = datasets.load_breast_cancer()

X, Y = dat.data, dat.target

Show original data shapes
print("Examples =", X.shape, "Labels =", Y.shape)

Kernel options: "limear", "poly", "rbf", "sigmoid", "cosine", "precomputed”
kpca = KernelPCA(n_components=7, kernel='rbf')

Fit and transform the data
X_kpca = kpca.fit_transform(X)

14

Show transformed data shapes
print ("Examples_KPCA =", X_kpca.shape, "Labels =", Y.shape)

Examples = (569, 30) Labels = (569,)
Examples_KPCA = (569, 7) Labels = (569,)

[62]:
[54]: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

lda = LinearDiscriminantAnalysis(n_components=1) # maz allowed
X_lda = lda.fit_transform(X, Y)
print(X_lda.shape)

(6569, 1)

[]:

15

