
Dataset Loading
Scikit Learn

1. Data collection.
2. Improving data quality (data preprocessing: drop duplicate

rows, handle missing values and outliers).
3. Feature engineering (feature extraction and selection,

dimensionality reduction).
4. Splitting data into training (and evaluation) and testing

sets.
5. Algor i thm select ion (Regression, Classi f icat ion,

Clustering ...).
6. Training.
7. Evaluation + Hyperparameter tuning.
8. Testing.
9. Deployment

Steps to Build a Machine Learning System

 Ex
am

pl
es

(T

ra
in

in
g

sa

m
pl

e

+

Te
st

sa

m
pl

e)

=

D
at

as
et

One

Example

Features Lab
el

1. Dataset Loading

1. Dataset Loading
Places

to

Find

Free

Datasets

:

•

Google

Dataset

Search

•

Kaggle

•

GitHub

•

OpenML

•

Data.Gov

•

Datahub.io

•

UCI

Machine

Learning

Repository

1. Dataset Loading: Pandas

import pandas as pd

df = pd.DataFrame(
 {"a" : [4, 5, 6],
 "b" : [7, 8, 9],
 "c" : [10, 11, 12]},
 index = [1, 2, 3])

print(df)

a b c
1 4 7 10
2 5 8 11
3 6 9 12

1. Dataset Loading: Pandas

Read

data

from

file

'filename.csv'

import

pandas

as

pd

data

=

pd.read_csv("filename.csv")

print

(data)

Select

only

the

feature_1

and

feature_2

columns

my_data

=

pd.DataFrame(data,

columns=

['feature_1','

feature_2

'])

print

(my_data)

Data

Exploration
#

Using

head()

method

with

an

argument

which

helps

us

to

restrict

the

number

of

initial

records

that

should

be

displayed
data.head(n=2)

#

Using

.tail()

method

with

an

argument

which

helps

us

to

restrict

the

number

of

initial

records

that

should

be

displayed
data.tail(n=2)

1. Dataset Loading: Pandas
Training

Set

&

Test

Set

columns

=

['

',

...

,

'

']

#

n

-1

my_data

=

data[columns

]

#

information

about

the

data

print(my_data.describe())

#

assigning

the

'col_i

'

column

as

target

target

=

data['col_i

'

]

data.head(n=2)

Read

and

Write

to

CSV

&

Excel

df

=

pd.read_csv('file.csv')

df.to_csv('myDataFrame.csv')

df

=

pd.read_excel('file.xlsx')

df.to_excel('myDataFrame.xlsx')

1. Dataset Loading: Pandas
Split

training

and

test

sets
data_copy

=

data.copy()
train_set

=

data_copy.sample(frac=0.80,

random_state=0)
test_set

=

data_copy.drop(train_set.index)

#

Use

‘pop’

to

extract

the

labels
train_set_labels

=

train_set.pop('col_i

')
test_set_labels

=

test_set.pop('col_i

')

print("train_set

:

\n",train_set)
print("train_set_labels

:

\n",train_set_labels)

1. Dataset Loading: Pandas
pandas.DataFrame.from_dict

 10

1. Dataset Loading: Files txt

 11

1. Dataset Loading: Numpy
Saving

&

Loading

Text

Files
import

numpy

as

np

In

[1]:

a

=

np.array([1,

2,

3,

4])
In

[2]:

np.savetxt('test1.txt',

a,

fmt='%d')
In

[3]:

b

=

np.loadtxt('test1.txt',

dtype=int)
In

[4]:

a

==

b
Out[4]:

array([

True,

True,

True,

True],

dtype=bool)

#

write

and

read

binary

files

In

[5]:

a.tofile('test2.dat')
In

[6]:

c

=

np.fromfile('test2.dat',

dtype=int)
In

[7]:

c

==

a
Out[7]:

array([

True,

True,

True,

True],

dtype=bool)

 12

1. Dataset Loading: Numpy

Saving

&

Loading

On

Disk

import

numpy

as

np

#

.npy

extension

is

added

if

not

given

In

[8]:

np.save('test3.npy',

a)

In

[9]:

d

=

np.load('test3.npy')

In

[10]:

a

==

d

Out[10]:

array([

True,

True,

True,

True],

dtype=bool)

 13

1. Dataset Loading: glob
The

glob

module

finds

all

the

pathnames

matching

a

specified

pattern.

from

glob

import

glob

#

Returns

a

list

of

pathnames

in

list

files

pathnames

=

glob("/home/Desktop/my_images*/*")

#

pathnames

=

glob("/home/Desktop/my_images/*.png")

for

path

in

pathnames:

print(path)

 14

1. Dataset Loading: Scikit Learn
from

sklearn

import

datasets

dat

=

datasets.load_breast_cancer()
print("Examples

=

",dat.data.shape

,"

Labels

=

",

dat.target.shape)

 15

1. Dataset Loading: Scikit Learn
from

sklearn

import

datasets

dat

=

datasets.fetch_20newsgroups(subset='train')

from

pprint

import

pprint

pprint(list(dat.target_names))

 16

1. Dataset Loading: Scikit Learn
scikit-learn

includes

utility

functions

for

loading

datasets

in

the

svmlight

/

libsvm

format.

In

this

format,

each

line

takes

the

form

<label>

<feature-id>:<feature-value>

<feature-id>:<feature-value>

....

This

format

is

especially

suitable

for

sparse

datasets.

In

this

module,

scipy

sparse

CSR

matrices

are

used

for

X

and

numpy

arrays

are

used

for

Y.

You

may

load

a

dataset

like

as

follows:

from

sklearn.datasets

import

load_svmlight_file
X_train,

Y_train

=

load_svmlight_file("/path/to/train_dataset.txt")

You

may

also

load

two

(or

more)

datasets

at

once:

X_train,

y_train,

X_test,

y_test

=

load_svmlight_files(("/path/to/train_dataset.txt",

"/path/to/test_dataset.txt"))

17

1. Dataset Loading: Scikit Learn
Downloading

datasets

from

the

openml.org

repository

>>>

from

sklearn.datasets

import

fetch_openml

>>>

mice

=

fetch_openml(name='miceprotein',

version=4)

>>>

mice.data.shape

(1080,

77)

>>>

mice.target.shape

(1080,)
>>>

np.unique(mice.target)

array(['c-CS-m',

'c-CS-s',

'c-SC-m',

'c-SC-s',

't-CS-m',

't-CS-s',

't-SC-m',

't-SC-s'],

dtype=object)
>>>

mice.url

'https://www.openml.org/d/40966'
>>>

mice.details['version']

'1'

 18

1. Dataset Loading: Generated Datasets -
classification
from

sklearn.datasets

import

make_classification
X,

y

=

make_classification(

n_samples=10000,

#

n_features=3,
flip_y=0.1,

class_sep=0.1)

print("X

shape

=

",X.shape)

print("len

y

=

",

len(y))

print(y)

from

mirapy.visualization

import

visualize_2d,

visualize_3d
visualize_3d(X,y)

 19

1. Dataset loading: Generated
Datasets - Regression
from

sklearn

import

datasets

from

matplotlib

import

pyplot

as

plt

x,

y

=

datasets.make_regression(

n_samples=30,

n_features=1,

noise=0.8)

plt.scatter(x,y)
plt.show()

 20

1. Dataset Loading: Generated Datasets -
Clustering
from

sklearn.datasets.samples_generator

import

make_blobs
from

matplotlib

import

pyplot

as

plt
import

pandas

as

pd

X,

y

=

make_blobs(n_samples=200,

centers=4,

n_features=2)

Xy

=

pd.DataFrame(dict(x1=X[:,0],

x2=X[:,1],

label=y))
groups

=

Xy.groupby('label')

fig,

ax

=

plt.subplots()
colors

=

["blue",

"red",

"green",

"purple"]
for

idx,

classification

in

groups:

classification.plot(ax=ax,

kind='scatter',

x='x1',

y='x2',

label=idx,

color=colors[idx])
plt.show()

 21

2. Data Preprocessing: missing values

Dealing

with

missing

values

:

df

=

df.fillna('*')
df[‘Test

Score’]

=

df[‘Test

Score’].fillna('*')

df[‘Test

Score’]

=

df[‘Test

Score'].fillna(df['Test

Score'].mean())
df['Test

Score']

=

df['Test

Score'].fillna(df['Test

Score'].interpolate())
df=

df.dropna()

#delete

the

missing

rows

of

data

df[‘Height(m)']=

df[‘Height(m)’].dropna()

import

pandas

as

pd

import

numpy

as

np

#

dictionary

of

lists

dictionary

=

{"Name":["Alex",

"Mike",

"John",

"Dave",

"Joey"],

"Height(m)":

[1.75,

1.65,

1.73,

np.nan,

1.82],

"Test

Score":[70,

np.nan,

8,

62,

73]}

#

creating

a

dataframe

from

dict
df

=

pd.DataFrame(dictionary)

#

using

isnull()

function

this

function

return

dataframe

of

Boolean

values

#

which

are

True

for

NaN

values.
print(df.isnull())
print("SUM

:

\n",df.isnull().sum())

SUM

:

Name

0

Height(m)

1
Test

Score

1

dtype:

int64

 22

2. Data Preprocessing: missing values
#

Dealing

with

Non-standard

missing

values:
#

dictionary

of

lists

dictionary_1

=

{"Name":["Alex",

"Mike",

"John",

"Dave",

"Joey"],

"Height(m)":

[1.75,

1.65,

"-",

"na",

1.82],

"Test

Score":[70,

np.nan,

8,

62,

73]}

#

creating

a

dataframe

from

list

df_1

=

pd.DataFrame(dictionary_1)

print("df_1

:

\n",df_1)
print("isnull

:

\n",df_1.isnull())

df_1

=

df_1.replace(["-","na"],

np.nan)
print("replace

non-standard

missing

values

:

\n",df_1)

df_1

=

df_1.fillna(0)
print("fillna

:

\n",df_1)

 23

2. Data Preprocessing: missing values
import

numpy

as

np

from

sklearn.impute

import

SimpleImputer

X

=

[[np.nan,

2],

[6,

np.nan],

[7,

6]]

#

mean,

median,

most_frequent,

constant(fill_value

=

)

imp

=

SimpleImputer(missing_values

=

np.nan,

strategy='mean')

data

=

imp.fit_transform(X)

print(data)

Multivariate

feature

imputation

:

IterativeImputer
Nearest

neighbors

imputation

:

KNNImputer

Marking

imputed

values

:

MissingIndicator

 24

2. Data Preprocessing: Data Projection

from

sklearn.datasets

import

make_classification

X,

y

=

make_classification(

n_samples=10000,

n_features=4,
flip_y=0.1,

class_sep=0.1)

print("X

shape

=

",X.shape)

print("len

y

=

",

len(y))

print(y)

from

mirapy.visualization

import

visualize_2d,

visualize_3d
visualize_2d(X,y)
visualize_3d(X,y)

 25

Attention

Thank you for your

