

ـة الجزائر يــــة الديمقر اطي ے العـــالی والبحـ محمد بوضياف جامعة وهران للعلوم والتكنولوجيا

BOUTCHICHA Djílalí

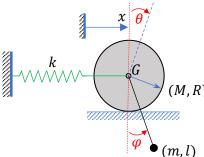
Université des Sciences et de la Technologie d'Oran Mohamed BOUDIAF Faculté de Génie Mécanique Département de Génie Mécanique

Examen final de « VOM » 2021

Exercice 2 (8 points) (chaque vaut 0.5 point; la somme 10 points)

Un disque de masse M, qui roule sans glissement, de rayon R et de moment d'inertie I_G = $\frac{1}{2}MR^2$. Oscille sous l'action d'un ressort de raideur k ; un pendule **simple** de longueur **l** et de masse m est articulé au point G.

- a) Déterminer les énergies cinétiques et potentielles de tous les éléments.
- b) Déterminer les équations de mouvement en fonction des coordonnées généralisés θ et φ qui restent faibles.



Solution:

Ressort:

L'énergie potentielle (pour une rotation θ du disque le ressort s'allonge de $x = R\theta$)

$$V_R = \frac{1}{2}k(R\theta)^2$$

Disque:

L'énergie cinétique (le disque a un mouvement de rotation et un mouvement de translation)

$$T_{D} = \frac{1}{2}I_{O}\dot{\theta}^{2} + \frac{1}{2}M\dot{x}^{2}$$

$$T_{D} = \frac{1}{2}\left(\frac{1}{2}MR^{2}\right)\dot{\theta}^{2} + \frac{1}{2}MR^{2}\dot{\theta}^{2}$$

$$T_{D} = \frac{3}{4}MR^{2}\dot{\theta}^{2}$$

Pendule simple:

Energie potentielle de gravitation du pendule simple

Energie potentielle de gravitation du pendule simple
$$V_P = mgh$$

$$h = y_m = l - l\cos\varphi = l(1 - \cos\varphi)$$
Pour φ faible $\cos\varphi = 1 - \frac{\varphi^2}{2} + \cdots$

$$V_P = \frac{1}{2}mgl\varphi^2$$
Energie cinétique du pendule simple
$$T_P = \frac{1}{2}m(\dot{x} + l\dot{\varphi})^2$$

$$T_P = \frac{1}{2}m(R\dot{\theta} + l\dot{\varphi})^2$$

L'énergie cinétique du système

$$T = T_D + T_P$$

الجمهوريــــــة الجزائريــــة الديمقراطيـــة الشعبيــة وزارة التعليــــة العــــاة والبحــــث العلــمي محمد بوضياف جامعة وهران للعلوم والتكنولوجيا

BOUTCHICHA Djílalí

Université des Sciences et de la Technologie d'Oran Mohamed BOUDIAF

Faculté de Génie Mécanique Département de Génie Mécanique

$$T = \frac{3}{4}MR^2\dot{\theta}^2 + \frac{1}{2}m(R\dot{\theta} + l\dot{\phi})^2$$

L'énergie potentielle du système

$$V = V_R + V_P$$

$$V = \frac{1}{2}k(R\theta)^2 + \frac{1}{2}mgl\varphi^2$$

Formalisme de Lagrange

Première coordonnée généralisée ($q_1 = \theta$)

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\theta}} \right) - \left(\frac{\partial T}{\partial \theta} \right) + \left(\frac{\partial V}{\partial \theta} \right) = 0$$

$$\frac{\partial T}{\partial \dot{\theta}} = \frac{3}{2} M R^2 \dot{\theta} + m R (R \dot{\theta} + l \dot{\phi})$$

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\theta}} \right) = \frac{3}{2} M R^2 \ddot{\theta} + m R (R \ddot{\theta} + l \ddot{\phi})$$

$$\frac{\partial T}{\partial \theta} = 0$$

$$\frac{\partial V}{\partial \theta} = k R^2 \theta$$

La première équation de mouvement

$$\left(\frac{3}{2}MR^2 + mR^2\right)\ddot{\theta} + mRl\ddot{\varphi} + kR^2\theta = 0$$

Seconde coordonnée généralisée ($q_2 = \varphi$)

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\varphi}} \right) - \left(\frac{\partial T}{\partial \varphi} \right) + \left(\frac{\partial V}{\partial \varphi} \right) = 0$$

$$\frac{\partial T}{\partial \dot{\varphi}} = ml (R\dot{\theta} + l\dot{\varphi})$$

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\varphi}} \right) = mlR\ddot{\theta} + ml^2 \ddot{\varphi}$$

$$\frac{\partial T}{\partial \varphi} = 0$$

$$\frac{\partial V}{\partial \varphi} = mgl\varphi$$

La seconde équation de mouvement

$$mlR\ddot{\theta} + ml^2\ddot{\varphi} + mgl\varphi = 0$$

Sous forme matricielle

$$\begin{bmatrix} \frac{3}{2}MR^2 + mR^2 & mRl \\ mRl & ml^2 \end{bmatrix} \begin{Bmatrix} \ddot{\theta} \\ \ddot{\varphi} \end{Bmatrix} + \begin{bmatrix} kR^2 & 0 \\ 0 & mgl \end{bmatrix} \begin{Bmatrix} \theta \\ \varphi \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}$$