Fiche de TD N° 3 Architecture des Ordinateurs (AO)

Exercice 1

- I. Une mémoire possède 13 lignes d'adresses et 8 lignes de données :
 - 1. Combien de mots binaires peut—on emmagasiner dans cette mémoire et combien de bits possède ce mot ?
 - 2. Quelle est la capacité totale de cette mémoire (en bits) ?
 - 3. Donner l'architecture réduite de cette mémoire.
- II. Lesquelles de ces organisations de mémoire sont plausibles ou envisageables ?
 - a. Registre d'adresses de 10 bits, 1024 cellules, 08 bits par cellule
 - **b.** Registre d'adresses de 10 bits, 1024 cellules, 12 bits par cellule
 - c. Registre d'adresses de 9 bits, 1024 cellules, 10 bits par cellule
 - **d.** Registre d'adresses de 11 bits, 1024 cellules, 10 bits par cellule
 - e. Registre d'adresses de 10 bits, 10 cellules, 1024 bits par cellule

Exercice 2

Soit une machine avec un registre d'adresse mémoire (R@M) comporte 32 bits, calculer :

- 1. Le nombre de mots adressable si un mot= 1octet, et si 1 mot= 16 bits. (Dans les deux cas)
- 2. La plus haute adresse possible dans les deux cas.
- 3. La capacité de la mémoire centrale dans les deux cas.
- 4. Quelle est la taille des registre CO, RI et ACC dans les deux cas.

Exercice 3

Soit une machine dotée d'une mémoire centrale de 256 Méga bits et un registre de donnée 16 bits.

- 1. Combien de valeur différente peut prendre un mot de cette mémoire ?
- 2. Donner la taille du bus d'adresse qui permet d'accéder à cette mémoire.
- 3. Est-ce que cette mémoire peut avoir un mot mémoire de 8 bits ? justifier votre réponse
- **4.** Supposant que processeur travaillant à une fréquence de 2000 MHz, donner le taux de transfert (théorique) d'un bus de donnée d'un processeur en MOcts/s.
- 5. Donner l'architecture réduite de cette mémoire.

Exercice 4

Le chargement des données depuis le disque dur vers la mémoire centrale s'effectue via un bus de 64 bits et la capacite de cette mémoire est de 32 Giga-octets.

- 1. Donner le nombre de lignes de donnée.
- 2. Donner le nombre de ligne d'adresse.
- **3.** Donner la taille des registres : RI (Registre d'instruction) et CO (Compteur Ordinal).
- 4. Donner l'adresse du dernier mot en Binaire et en Hexadécimal.
- **5.** On veut stocker sur cette mémoire des nombres réels. Calculer en Hexadécimale l'adresse du dixième nombre sachant que le premier nombre est stocké à partir de l'adresse 1F₍₁₆₎ et que chaque nombre est représenté sur 8 Octets.

Exercice 5

- 1. Nous disposons d'une mémoire principale de 64 M mots de 32 bits.
 - a. Calculer sa capacité en Méga-octets.
 - **b.** Déterminer la largeur du bus de données.
 - **c.** Déterminer le nombre de bits du bus d'adresse et du registre d'adresse du microprocesseur associé à cette mémoire.
 - **d.** Nous voulons étendre la mémoire principale à 1Go avec des puces de capacité 512Ko. Calculer le nombre de puces nécessaire à l'extension de cette mémoire.
- **2.** Dans cette mémoire nous avons stocker un tableau de données de 30 éléments, où le premier élément occupe l'adresse (6F)₁₆ et le troisième élément se trouve à l'adresse (73)₁₆.
 - a. Déduire le nombre de mots mémoire occupé par un élément du tableau.
 - **b.** Calculer l'adresse du dernier élément du tableau.

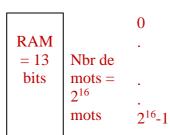
Exercice 6

- **1.** Si l'intervalle des adresses d'une mémoire va de 0000H à FFFEH. Combien cette mémoire a de cases ?
- **2.** Si une mémoire possède 5120 emplacements en mémoire. Donner l'intervalle (début et fin) de ces adresses exprimées en hexadécimal.
- **3.** Si l'intervalle des adresses d'une mémoire va de 0531H à F20DH. Combien cette mémoire a de cases ?

Fiche de TD N° 3 Architecture des Ordinateurs (AO) (Solution)

Exercice 1

- I. Une mémoire possède 13 lignes d'adresses et 8 lignes de données :
 - 1. Combien de mots binaires peut—on emmagasiner dans cette mémoire et combien de bits possède ce mot ?


Nombre de mots=2nombre lignes d'@ → donc Le nombre de mots =2¹³ mots Et **taille du mot =nbre de lignes de données →** donc taille du mot =8 bits

2. Quelle est la capacité totale de cette mémoire (en bits) ?

On a capacité = Taille du mot * nombre de mots = $2^{13}x8$ \rightarrow donc Capacité = 2^{16} bits

3. Donner l'architecture réduite de cette mémoire.

Nombre de lignes d'adresse =13 lignes = taille Registre d'adresse mémoire (RAM) Nombre de lignes de données =8 lignes = taille Registre de données mémoire (RDM)

RDM = 8 bits

- II. Lesquelles de ces organisations de mémoire sont plausibles ou envisageables ?

 Organisation envisageable si 2^{taille du registre d'}

 >= nbre de cellules → car ce sont les seuls paramètres qu'ils ont une relation entre eux
 - **a.** Registre d'adresses de 10 bits, 1024 cellules, 08 bits par cellule $2^{10} = 1024$ donc envisageable
 - **b.** Registre d'adresses de 10 bits, 1024 cellules, 12 bits par cellule $2^{10} = 1024$ donc envisageable
 - **c.** Registre d'adresses de 9 bits, 1024 cellules, 10 bits par cellule $2^9 < 1024$ donc impossible
 - **d.** Registre d'adresses de 11 bits, 1024 cellules, 10 bits par cellule $2^{10} > 1024$ donc envisageable
 - e. Registre d'adresses de 10 bits, 10 cellules, 1024 bits par cellule $2^{10} > 10$ donc envisageable

Exercice 2

Soit une machine avec un registre d'adresse mémoire (R@M) comporte 32 bits, calculer :

1- Le nombre de mots adressable si un mot= loctet, et si 1 mot= 16 bits. (Dans 2 cas)

1 ^{er} cas: si 1 mot= 8 bits	2 ^{ème} cas : si 1 mot= 2 octets
Le nbre de mots=2 ^{lignes d'@}	Donc le nombre de mots= 2 ³² mots de 2
=> Le nbre de mots=2 ³²	octets
Donc le nombre de mots= 2 ³² mots de 8	
bits	

2- La plus haute adresse possible dans les deux cas.

1 ^{er} cas: si 1 mot= 8 bits	2 ^{ème} cas : si 1 mot= 2 octets
La plus haute adresse possible pour ces mots de 8 bits. rep= le nombre de mots -1 = 2 ³² -1= FFFFFFF (16)	La plus haute adresse possible pour ces mots de 2 octets. rep= 2 ³² -1= FFFFFFF (16)

3- La capacité de la mémoire centrale dans les deux cas.

1 ^{er} cas: si 1 mot= 8 bits	2 ^{ème} cas : si 1 mot= 2 octets
Capacité1= Nbre de mots x Taille du mot	Capacité $2 = 2^{32} \times 2 = 2^{33}$ octets
$= 2^{32} \times 8 = 2^{35} \text{ bits}$	ou = 2^{32} x $16 = 2^{36}$ bits

4- Quelle est la taille des registre CO, RI et ACC dans les deux cas.

1 ^{er} cas: si 1 mot= 8 bits	2 ^{ème} cas : si 1 mot= 2 octets
CO=Nbre de ligne d'adresse= RAM=32 bits	CO =32 bits
RI= Nbre de ligne de données= RDM =taille	RI= 2 octets = 16 bits
mots= 8bits	ACC= 2 octets = 16 bits
ACC= Nbre de ligne de données= 8bits	

Exercice 3

Soit une machine dotée d'une mémoire centrale de 256 Méga bits et un registre de donnée 16 bits.

1. Combien de valeur différente peut prendre un mot de cette mémoire ?

Un mot mémoire = taille du registre de donnée = 16 bits

Nombre de valeur différente d'un mot mémoire= 2^{taille du mot} = 2¹⁶ valeur différente

2. Donner la taille du bus d'adresse qui permet d'accéder à cette mémoire.

Nbre de mots = capacité/taille du mot \rightarrow Nbre de mots = 256 Méga /16= 2^{8*} 2^{20} / 2^{4} = 2^{24} mots Nombre de mots = $2^{\text{nombre de lignes d'adresse}}$ sachant que nbre de lignes d'@= taille du bus d'@ Donc taille du bus d'adresse = 24 bits

- 3. Est-ce que cette mémoire peut avoir un mot mémoire de 8 bits ? justifier votre réponse Mot mémoire = 8 bits donc oui car taille du mot mémoire =< taille registre de donnée
 - **4.** Supposant que processeur travaillant à une fréquence de 2000 MHz, donner le taux de transfert (théorique) d'un bus de donnée d'un processeur en MOcts/s.

Taux de transfert (Mo/s) = Fréquence (en MHz) \times Largeur du bus (en octets)

Largeur du bus= Taille d'un bus de données = nombre de lignes de données=16 bits = 2 octets Taux de transfert (Mo/s) = 2000 * 2 = 4000 Mo/s

5. Donner l'architecture réduite de cette mémoire.

				Capacité =2 ²⁸ bits
Nombre de lignes d'adresse =24	RAD		0	
lignes = taille RAM	= 24			
Nombre de lignes de données	bits	Nbr de		
=16 lignes = taille RDM		mots =		
		2^{24}		
		mots	2^{24} -1	
				Taille du mot = 16 bits
		ı		
				RDM =16 bits

Exercice 4

Le chargement des données depuis le disque dur vers la mémoire centrale s'effectue via un bus de 64 bits et la capacite de cette mémoire est de 32 Giga-octets.

1. Donner le nombre de lignes de donnée.

Taille bus de donnée = Nbre de ligne de données =64lignes

2. Donner le nombre de ligne d'adresse.

Nbre de mots= Capacité/ Nbre de ligne de données = $32*2^{30*}2^{3/2}6=2^{38}/2^{6=}2^{32}$ mots Nombre de mots = $2^{\text{nombre de lignes d'adresse}}$ donc nbre de lignes d'adresse = 32 lignes

3. Donner la taille des registres : RI (Registre d'instruction) et CO (Compteur Ordinal).

RI = Nbre de ligne de données= 64 bits CO=Nbre de ligne d'adresse =32 bits

4. Donner l'adresse du dernier mot en Binaire et en Hexadécimal.

L'adresse du dernier mot= le nombre de mots $-1 = 2^{32}-1$

```
1111111 ....1111 (2) sur 32 bits = FFFFFFFF (16)
```

5. On veut stocker sur cette mémoire des nombres réels. Calculer en Hexadécimale l'adresse du dixième nombre sachant que le premier nombre est stocké à partir de l'adresse 1F₍₁₆₎ et que chaque nombre est représenté sur 8 Octets.

Nombre de case mémoire pour chaque nombre réel = taille du nombre réel / taille du mot

```
= 8 \text{ octs } / 64 \text{ bits } = 64/64 = 1 \text{ mot}
```

@10ème nbre réel = @1er nbre réel + (nombre de mots pour chaque nbre réel * (n-1))

Donc $@10^{\text{ème}}$ nbre réel = $@1^{\text{er}}$ nbre réel + (10-1)

```
@10^{\text{ème}} nbre réel =(1F)<sub>(16)</sub> = 00011111=31<sub>(10)</sub>
```

$$@10^{\text{ème}} \text{ nbre réel} = 31+9=40_{(10)}=28_{(16)}$$

Exercice 5

- 1. Nous disposons d'une mémoire principale de 64 M mots de 32 bits.
 - a. Calculer sa capacité en Méga-octets.

```
C = 64 \text{ M} * 32 \text{ bits} = 256 \text{ MO}
```

b. Déterminer la largeur du bus de données.

Largeur Bus de données= taille du mot = 32 bits

c. Déterminer le nombre de bits du bus d'adresse et du registre d'adresse du microprocesseur associé à cette mémoire.

Le bus d'adresse et Le registre d'adresse ont tous les deux la même taille.

```
Le nbre de mots= 64 \text{ MO} = 2^6 * 2^{20} = 2^{26} \Rightarrow bus d'adresse et registre d'adresse = 26 \text{ bits}
```

d. Nous voulons étendre la mémoire principale à 1Go avec des puces de capacité 512Ko. Calculer le nombre de puces nécessaire à l'extension de cette mémoire.

```
L'extension est : 1GO - 256 MO = 2^{30} \text{ octets} - 256* 2^{20} \text{ octets}
```

```
=2^{20} (1024 - 256) octets =2^{20} (768) octets
```

Puce disponible: 512 K octet

Nombre de puce nécessaire : 2^{20} (768) octets / $512 * 2^{10}$ octets = 1536 puces

2. Dans cette mémoire nous avons stocker un tableau de données de 30 éléments, où le premier élément occupe l'adresse (6F)₁₆ et le troisième élément se trouve à l'adresse (73)₁₆.

a. Déduire le nombre de mots mémoire occupé par un élément du tableau.

@1^{er} élément + (nb mot par élément*(3-1)) = @ $3^{\text{ème}}$ élément

 \Rightarrow nb mot par élément = (@ 3ème élément-@1er élément)/2

nb mot par élément = $((73)_{16} - (6F)_{16})/2 = (115-111)/2=2$

- → Un élément du tableau occupe 2 Mots mémoires
 - **b.** Calculer l'adresse du dernier élément du tableau.

Ecart: $30 - 1 = 29 * 2 = (58)_{10} = (3A)_{16}$

Adresse du 30ème élément = adresse du 1er élément + Ecart = $(6F)_{16}$ + $(3A)_{16}$ = $(A9)_{16}$

Exercice 6

1. Si l'intervalle des adresses d'une mémoire va de 0000H à FFFEH. Combien cette mémoire a de cases ?

Le nombre des cases mémoires est : (FFFEh - 0000h) + 1 = FFFFh = (65535)10

- **2.** Si une mémoire possède 5120 emplacements en mémoire. Donner l'intervalle (début et fin) de ces adresses exprimées en hexadécimal.
- @ de début est 0000h. @ de fin est : 5120 1 = (5119)10 = 13FFh
- **3.** Si l'intervalle des adresses d'une mémoire va de 0531H à F20DH. Combien cette mémoire a de cases ?

Le nombre de cases est : (F20Dh - 0531h) + 1h = ECDDh = (60637)10