
Chapter 4 Computation of Eigenvalues and Eigenvectors 

 

Eigenvalues and eigenvectors are fundamental concepts in linear algebra with numerous applications 

in science and engineering. This course section will cover the localization of eigenvalues and the 

power method for their computation. 

4.1 Localization of Eigenvalues 

Definition 

Eigenvalues are scalar values associated with a square matrix 𝐴 that satisfy the Eq. (48): 

𝐴𝐱 = 𝛌𝐱                          (48) 

Where 𝛌 is an eigenvalue and 𝑥 is the corresponding eigenvector. 

The equation states that when the matrix 𝐴 acts on the vector 𝑥, the output is a scaled version of 𝑥. In 

other words, 𝐴 transforms 𝑥 by merely stretching or compressing it without changing its direction. 

Example; 

𝐴 = (
3 0
8 −1

) and x=(
1
2

) 

𝐴𝑥 = (
3 0
8 −1

) (
1
2

) = (
3
6

) = 3 × (
1
2

) 

Thus, the eigenvalue 𝝀 = 𝟑 and the associated eigenvector is 𝑥 = (
1
2

). 

4.1.1 Finding Eigenvalues: Analytical calculation 

To find the eigenvalues of a matrix 𝐴, we rearrange the equation (48) into the following form: 

Ax − λx = 0                         (49) 

This can be rewritten as: 

(𝐴 − 𝜆𝐼)𝑥 = 0                         (50) 

where 𝐼 is the identity matrix of the same size 𝐴. For non-trivial solutions (i.e., x≠0), the determinant 

of (𝐴 − 𝜆𝐼)must be zero: 

𝒅𝒆𝒕(𝑨 − 𝝀𝑰) = 𝟎                 (51) 

he equation 𝒅𝒆𝒕(𝑨 − 𝝀𝑰) = 0 is known as the characteristic equation of the matrix 𝐴 The solutions to 

this polynomial equation give the eigenvalues λ1,λ2,…,λn . 



Example 

Consider the matrix: 

𝐴 = (
10 0 0
1 −3 −7
0 2 6

) 

To find the Eigenvalues and eigenvectors, we first need to compute the eigenvalues of the matrix 𝐴. 

1) Characteristic Polynomial: The eigenvalues are found by solving the characteristic equation 

given by: 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0. 

Where 𝐼 is the identity matrix. For our matrix 𝐴: 

𝐴 = (
10 0 0
1 −3 −7
0 2 6

)     𝑎𝑛𝑑 𝐼 = (
1 0 0
0 1 0
0 0 1

) 

𝐴 − 𝜆𝐼 = (
10 − 𝜆 0 0

1 −3 − 𝜆 −7
0 2 6 − 𝜆

) 

 

2) Determinant Calculation: 

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = det (
10 − 𝜆 0 0

1 −3 − 𝜆 −7
0 2 6 − 𝜆

) = (10 − 𝜆)[(−3 − 𝜆)(6 − 𝜆) + 14]

= (𝜆 − 10)[𝜆2 − 3𝜆 − 4] = (𝜆 − 10)(𝜆 + 1)(𝜆 − 4) 

3) Solving the Quadratic Equation: (𝜆 − 10)(𝜆 + 1)(𝜆 − 4) = 0 

This gives us: 𝜆1 = 10  , 𝜆2 = −1 𝑎𝑛𝑑       𝜆3 = 4 

𝐓𝐡𝐞 𝐄𝐢𝐠𝐞𝐧𝐯𝐚𝐥𝐮𝐞𝐬 𝐚𝐫𝐞  𝝀𝟏 = 𝟏𝟎  , 𝝀𝟐 = −𝟏 𝒂𝒏𝒅       𝝀𝟑 = 𝟒 

4) Calculating the eigenvectors: 

Now, we compute the eigenvectors:  

𝐅𝐨𝐫  𝝀𝟏 = 𝟏𝟎 

𝐴𝑥 = 1𝑥 → (
10 0 0
1 −3 −7
0 2 6

) (

𝑥1

𝑥2

𝑥3

) = 10 (

𝑥1

𝑥2

𝑥3

) → {

10𝑥1 = 10𝑥1

𝑥1 − 3𝑥2 − 7𝑥3 = 10𝑥2

2𝑥2 + 6𝑥3 = 10𝑥3

→ {

𝑥1 = 1
𝑥2 = 2/33
𝑥3 = 1/33

    →  𝑋1 = (
1

2/33
1/33

) 

𝐅𝐨𝐫  𝝀𝟐 = −𝟏 



𝐴𝑥 = 2𝑥 → (
10 0 0
1 −3 −7
0 2 6

) (

𝑥1

𝑥2

𝑥3

) = −1 (

𝑥1

𝑥2

𝑥3

) → {

10𝑥1 = −𝑥1

𝑥1 − 3𝑥2 − 7𝑥3 = −𝑥2

2𝑥2 + 6𝑥3 = −𝑥3

→ {

𝑥1 = 0
𝑥2 = 1

𝑥3 = −2/7
    →  𝑋2 = (

0
1

−2/7
) 

𝐅𝐨𝐫  𝝀𝟑 = 𝟒 

𝐴𝑥 = 3𝑥 → (
10 0 0
1 −3 −7
0 2 6

) (

𝑥1

𝑥2

𝑥3

) = 4 (

𝑥1

𝑥2

𝑥3

) → {
10𝑥1 = 4𝑥1

𝑥1 − 3𝑥2 − 7𝑥3 = 4𝑥2

2𝑥2 + 6𝑥3 = 4𝑥3

→ {
𝑥1 = 0

𝑥2 = −1
𝑥3 = 1

    →  𝑋3 = (
0

−1
1

) 

 

𝐓𝐡𝐞 𝐄𝐢𝐠𝐞𝐧𝐯𝐞𝐜𝐭𝐨𝐫𝐬 𝐚𝐫𝐞  𝑋1 = (

1
2/33
1/33

) , 𝑋2 = (
0
1

−2/7
)  𝒂𝒏𝒅  𝑋3 = (

0
−1
1

) 

Unfortunately, this approach is generally not recommended, as there's no reliable and quick way 

to find the roots of a polynomial with a degree higher than 4. Thus, we investigate numerical 

methods for solving the eigenvalue problem 

4.1.2 Localization Techniques 

Localization methods help to determine the approximate locations of eigenvalues without computing 

them directly. Some common techniques include: 

4.1.2.1  Gershgorin Circle Theorem 

The Gershgorin Circle Theorem states that every eigenvalue of a matrix 𝐴 = [𝑎𝑖𝑗] lies within at least 

one of the Gershgorin disks defined by Eq. (52): 

𝐷𝑖 = {𝑧 ∈ 𝐶: ⌈𝑧 − 𝑎𝑖𝑗⌉ ≤ ∑ |𝑎𝑖𝑗|𝑗≠𝑖 }          (52) 

This means that for each row  𝑖 we can draw a circle in the complex plane centered at 𝑎𝑖𝑗with a radius 

equal to the sum of the absolute values of the other entries in the row. 

The Gerschgorin theorem states that all the eigenvalues of a matrix 𝐴 belong to the union of 𝑛 disks. If 

the Gerschgorin disks are all disjoint, then each one contains exactly one eigenvalue.  

Notations  

1) All the eigenvalues of 𝐴 are located within the union of the disks. 

2) The 𝑖𝑡ℎ disk is defined with center  𝑎𝑖𝑗 and radius  𝑟𝑖 is given by  Eq. (53): 

 𝑟𝑖 = ∑ | 𝑎𝑖𝑗|𝑛
𝑗≠𝑖               (53) 



The Gerschgorin theorem provides a valuable way to localize eigenvalues of a matrix. Each 

Gerschgorin disk can be visualized in the complex plane, centered at the diagonal entry  𝑎𝑖𝑗of the 

matrix and extending outwards by the radius  𝑟𝑖. 

For example, if you have a matrix: 

𝐵 = (
1 0 −3
2 3 1
1 0 −2

)     

the disks are calculated as follows: 

1. For i=1 

 Center: :  𝑏11 = 1 

The Gerschgorin disks according to the rows: 

Radius:  𝑟1 = |0| + |−3| = 3  

Disk:  𝐷1 → (1,3) 

The Gerschgorin disks according to the columns 

Radius:  𝑟1 = |2| + |1| = 3  

Disk:  𝐷1 → (1,3) 

 

2. For i=2: 

Center:  𝑏22 = 3 

The Gerschgorin disks according to the rows: 

Radius: :  𝑟2 = |2| + |1| = 3  

Disk:  𝐷2 → (3,3) 

The Gerschgorin disks according to the columns: 

Radius: :  𝑟2 = |0| + |0| = 0  

Disk:  𝐷2 → (3,0) 

3. For i=3 

Center:  𝑏33 = −2 

The Gerschgorin disks according to the rows: 



Radius: :  𝑟3 = |1| + |0| = 1  

Disk:  𝐷3 → (−2,1)  

The Gerschgorin disks according to the columns: 

Radius: :  𝑟3 = |−3| + |1| = 4  

Disk:  𝐷3 → (−2,4)  

Knowing that 𝐵 and 𝐵𝑇 share the same eigenvalues, we choose the smallest radius for 

each Gerschgorin disk. This provides the following localization of the spectrum. 

 𝐷1 → (1,3)  ,  𝐷2 → (3,0)        𝑎𝑛𝑑    𝐷3 → (−2,1) 

 

Figure 4 shows the localization of the real eigenvalues and complex eigenvalues. 

 

 

 

 

 

 

 

Figure.4 Localization of the real eigenvalues (a) and complex eigenvalues (b). 

By employing analytical calculations, we were able to accurately determine the eigenvalues, which 

were then used to verify localization. 

Determinant Calculation: 

Det(𝐵 − 𝜆𝐼)=det[
1 − 𝜆 0 −3

2 3 − 𝜆 1
1 0 −2 − 𝜆

] 

=(1 − 𝜆)[((3 − 𝜆)(−2 − 𝜆) − 0)] + 0 − [3(3 − 𝜆)] 

= (1 − 𝜆)[(𝜆 − 3)(𝜆 − 2)] + 3(𝜆 − 3)] 

=(𝜆 − 3)[−(𝜆 − 1)(𝜆 − 2) + 3] 

=(𝜆 − 3)[−(𝜆2 − 3𝜆 + 2) + 3] 

(a)                                                           (b) 



=-(𝜆 − 3)[𝜆2 + 𝜆 + 1] 

Solving the Quadratic Equation: 

−(𝜆 − 3)[𝜆2 + 𝜆 + 1] = 0 →  𝜆 − 3 = 0   𝑜𝑟      𝜆2 + 𝜆 + 1 = 0 

The solutions are   𝜆1 = 3,  𝜆2 = −
1

2
+

√3

2
𝑖, 𝑎𝑛𝑑 𝜆3 = −

1

2
−

√3

2
i . Figure 4 (b) confirms the 

localization of the eigenvalues..  

 

 

 

 

 

 

 

In addition to the Gershgorin Circle Theorem, there are several other localization methods for 

determining eigenvalues. Interval Analysis is one such method; for instance, using Sturm's theorem, 

we can ascertain the number of eigenvalues within a specified interval by analyzing the roots of the 

characteristic polynomial. This helps in refining the intervals that contain the eigenvalues. 

Furthermore, various numerical methods can be utilized to obtain eigenvalues with greater precision 

after initial localization. Techniques like the QR algorithm offer a reliable way to compute 

eigenvalues more accurately, enhancing our understanding of the spectral properties of matrices. 

  

4.2 Power Method 

The Power Method is one of the simplest techniques for calculating the eigenvalues of a matrix 𝐴. 

This iterative method is particularly useful for finding the eigenvalue with the largest absolute value, 

known as the dominant eigenvalue, along with its corresponding eigenvector. 

Theorem 

Let 𝐴 be a square matrix of size 𝑛 × 𝑛 that has N eigenvalues. The eigenvalues are defined as the 

values 𝜆1, 𝜆2 … ,   𝜆𝑛 that satisfy the characteristic equation Eq. (54): 

|𝝀𝟏 | > |𝝀𝟐| ≥  … ≥ |𝝀𝒏|     (54) 

An eigenvalue 𝜆1 of a matrix A is said to be dominant if its absolute value is greater than the absolute 

values of all other eigenvalues of A.  

Let 𝑋(0)be a suitably chosen vector, then the sequences of vectors in Eq. (55)  

Exercise: Consider the following matrix 

A= (

30
4

−1
−3

1
15
0
5

2
−4
3
0

3
−2
5

−1

)  

 

1) Calculate the Gershgorin disks. 

2) Draw the Gershgorin disks in the complex plane. 

3) Determine the possible localization of the eigenvalues of matrix A based on the 

Gershgorin disks. 

 

 

 



{𝑋(𝑘) = [𝑥1
(𝑘)

, 𝑥2
(𝑘)

… , 𝑥𝑛
(𝑘)

]}    (55) 

And the sequence of scalars  𝐶𝑘 generated in Eq. (56) where Any vector 𝑋 in 𝑅𝑛 can be expressed 

as:∑ 𝑐𝑖𝑥𝑖
𝑛
𝑖=1 . 

𝑥(1) = 𝐴𝑥(0)=∑ 𝑐𝑖𝐴𝑥𝑖
𝑛
𝑖=1 =∑ 𝑐𝑖𝜆𝑖

𝑛
𝑖=1 𝑥𝑖        (56) 

𝑥(𝑘) = 𝐴𝑘𝑥(0) = ∑ 𝑐𝑖(𝜆𝑖)𝑘

𝑛

𝑖=1

𝑥𝑖 = 𝜆1
𝑘 [𝑐𝑖𝑥𝑖 + 𝑐2 (

𝜆2

𝜆1
)

𝑘

𝑥2 + ⋯ + 𝑐2 (
𝜆𝑛

𝜆1
)

𝑘

𝑥𝑛] 

Converges respectively to the dominant eigenvector 𝒗𝟏 and the eigenvalue 𝜆1. 

 

NB. The dominant eigenvalue plays a crucial role in various numerical methods and applications, 

particularly in iterative methods for solving systems of linear equations or finding eigenvalues 

themselves. The dominant eigenvalue significantly impacts various aspects of numerical analysis and 

system behavior. In iterative methods like the Power Method, it governs the convergence rate, 

allowing the method to quickly approach the dominant eigenvalue and its associated eigenvector, 

while other eigenvalues influence the process to a lesser extent. Furthermore, in dynamic systems, the 

magnitude of the dominant eigenvalue serves as an indicator of stability: if it is less than 1, the system 

is stable, whereas if it exceeds 1, the system becomes unstable. Additionally, the dominant eigenvalue 

provides valuable insights into the long-term behavior of processes modeled by matrices, including 

applications in population dynamics, Markov chains, and iterative algorithms. 

Iterative Process 

The method proceeds as follows: 

1) Initialization: Choose an initial vector 𝑋(0) (often randomly). 

2) Iteration: For k=0,1,2,… 

𝑥(1) = 𝐴𝑥(0)=∑ 𝑐𝑖𝐴𝑥𝑖
𝑛
𝑖=1 =∑ 𝑐𝑖𝜆𝑖

𝑛
𝑖=1 𝑥𝑖 

Here, 𝑐𝑖 are the coefficients corresponding to the eigenvalues λi  and eigenvectors 𝑥𝑖. 

3) Normalization: To avoid overflow or underflow, normalize 𝑥(1): 

𝑌(𝑘+1) = 𝑐(𝑘+1)𝑋(𝑘) 

where 𝑐(𝑘+1) = max1≤𝑖≤𝑁{|𝑥𝑖
(𝑘)|}, This ensures that the components of the vector 𝑌(𝑘+1) are 

scaled to maintain numerical stability. 

4) Update the Iterative Vector: 

𝑋(𝑘+1) =
1

𝑐(𝑘+1)
𝑋(𝑘) 

Here, 𝑐𝑖
(𝑘+1) = 𝑥𝑗

(𝑘) is the coefficient that contributes to the eigenvector approximation. 



5) Convergence Check: Estimate the dominant eigenvalue using the Rayleigh quotient: 

𝜆 ≈
𝑋(𝑘)𝑇𝐴𝑋(𝑘)

𝑋(𝑘)𝑇𝑋(𝑘)
 

Repeat until the change in 𝑋(𝑘) is smaller than a predefined tolerance. 

Example: 

Applying the Power Method to Matrix 𝐴 

Given the matrix A=[
10 0 0
1 −3 −7
0 2 6

]  and the initial vector 𝑥(0)=[
1
0
0

] 

we will apply the Power Method to find the dominant eigenvalue and its corresponding eigenvector. 

Iterative Process 

1. First Iteration: 

A𝑥(0)=[
10 0 0
1 −3 −7
0 2 6

] [
1
0
0

]=[
10
1
0

] 

Normalization: Calculate the maximum element for normalization: 

𝑐(1) = max
1≤𝑖≤𝑁

{|𝑥𝑖
(1)|} = 10 

Normalize 𝑥(1) : 

𝑌(1) =
𝑋(1)

𝑐(1)
=

1

10
[
10
1
0

] = [
1

0,1
0

] 

Update: 

𝑋(1) = 𝑌(1). 𝑐(1) = [
1

0,1
0

] . 10 = [
10
1
0

] 

2. Second Iteration: 

𝑥(2) =A𝑥(1)=[
10 0 0
1 −3 −7
0 2 6

] [
10
1
0

]=[
100
−20
12

] 

𝑐(2) = max
1≤𝑖≤𝑁

{|𝑥𝑖
(1)|} = 100 

 

Normalize 𝑥(2) : 



𝑌(2) =
𝑋(2)

𝑐(2)
=

1

100
[

100
−20
12

] = [
1

−0,2
0.12

] 

Update: 

𝑋(2) = 𝑌(2). 𝑐(2) = [
1

−0,2
0.12

] . 100 = [
100
−20
12

] 

3. Third  Iteration: 

𝑥(3) =A𝑥(2)=[
10 0 0
1 −3 −7
0 2 6

] [
100
−20
12

]=[
1000
−140

72
] 

𝑐(3) = max
1≤𝑖≤𝑁

{|𝑥𝑖
(1)|} = 1000 

 

Normalize 𝑥(2) : 

𝑌(3) =
𝑋(3)

𝑐(3)
=

1

1000
[

1000
−140

72
] = [

1
−0,14
0.072

] 

Update: 

𝑋(2) = 𝑌(2). 𝑐(2) = [
1

−0,14
0.072

] . 1000 = [
1000
−140

72
] 

Rayleigh Quotient 

Finally, we can estimate the dominant eigenvalue using the Rayleigh quotient: 

𝜆 ≈
𝑋(2)𝑇𝐴𝑋(2)

𝑋(2)𝑇𝑋(𝑘2)
=

[100 −20 12] [
1000
−140

72
]

[100 −20 12] [
100
−20
12

]

=
103664

10444
≈ 9.91 

 

The Power Method has shown that the dominant eigenvalue of matrix A is approximately 

λ≈9.91, with an associated eigenvector that converges through the iterative process. 

 

 

 



 

 

 

 

 

 

 

Exercise:  

Consider the following matri x and Initial Vector 

A= (
5 4 2
2 3 1
1 2 3

)  and 𝑋(0) = (
1
1
1

) 

 

1) Apply the Power Method to find the dominant eigenvalue and its corresponding 

eigenvector of matrix A. 

2) Perform two iterations of the Power Method and calculate the Rayleigh 

quotient to estimate the dominant eigenvalue. 
 

 


