University of Science and Technology Mohamed Boudiaf Oran (USTMB Oran)

Faculty of Mathematics and Computer Science

Department of Computer science

Numerical methods exam

(1h30)

Exercice 1 (6 points)

Solve the following linear system using the simple Gaussian elimination method.

Exercice 2 (6 points)

Soit la matrice B :

$$B := \begin{pmatrix} 1 & 2 & 4 \\ -2 & 1 & 3 \\ -4 & -3 & 1 \end{pmatrix}$$

- 1- Find an LU factorization of the matrix B, where L is the unit diagonal low triangular matrix and U is the upper triangular matrix.
- 2- Deduce the determinant of B.

3- Solve the equation
$$BX = \begin{pmatrix} 5\\7\\9 \end{pmatrix}$$
. Using LU factorization.

Exercice 3 (8 points)

Consider the following linear system of equations

$4x_1$	-	x_2	+	x_3	=	12
$-x_1$	+	$3x_2$	+	x_3	=	1
x_1	+	x_2	+	$5x_3$	=	-14

- 1- Show that both iterative methods (Jacobi and Gauss-Seidel) will converge by using : (*T*=J $||T||_{\infty} < 1$ and *T*=G for Jacobi and Gauss-seidel matrix respectively)
- 2- Find second approximation $\mathbf{x}^{(2)}$ when the initial solution is $\mathbf{x}^{(0)} = [4; 3; -3]T$ for the both method (Jacobi and Gauss seidel)
- 3- How many iterations (for the both method) needed to get an accuracy within 10⁻⁴: using the formula

$$\|\mathbf{x} - \mathbf{x}^{(k)}\| \leq \frac{\|T_J\|^k}{1 - \|T_J\|} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\| \leq \varepsilon ((T=J \text{ and } T=G \text{ for Jacobi and Gauss-seidel matrix respectively})$$