

BOUTCHICHA Djilali

Université des Sciences et de la Technologie d'Oran Mohamed BOUDIAF
Faculté de Génie Mécanique
Département de Génie Mécanique

Énergie d'un mouvement harmonique simple

L'énergie mécanique d'un système masse-ressort est emmagasinée sous forme d'énergie potentielle élastique par le ressort et sous forme d'énergie cinétique par la masse. L'énergie potentielle élastique durant l'oscillation du système masse-ressort est donnée par

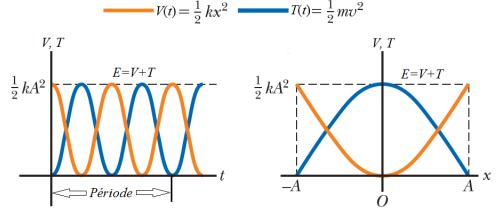
$$\begin{cases} x(t) = A\cos(\omega t + \varphi) \\ V(t) = \frac{1}{2}kx^2(t) \end{cases} \implies V(t) = \frac{1}{2}kA^2\cos^2(\omega t + \varphi)$$

où V(t) est l'énergie potentielle élastique (à l'instant t) en joules.

L'énergie cinétique durant l'oscillation du système masse-ressort est donnée par

$$\begin{cases} v(t) = -\omega A \sin(\omega t + \varphi) \\ T(t) = \frac{1}{2} m v^2(t) \end{cases} \implies \begin{cases} T(t) = \frac{1}{2} m \omega^2 A^2 \sin^2(\omega t + \varphi) \\ = k A^2 \sin^2(\omega t + \varphi) \end{cases}$$

où T(t) est l'énergie cinétique (à l'instant t) en joules.



Pour de petites oscillations du système masse-ressort, l'énergie mécanique est constante comme on le voit avec le développement

où E est l'énergie mécanique (constante) en joules.

$$\begin{split} E &= V(t) + T(t) \\ &= \frac{1}{2}kA^2\cos^2(\omega t + \varphi) + \frac{1}{2}m\omega^2 A^2\sin^2(\omega t + \varphi) \\ &= \frac{1}{2}kA^2\cos^2(\omega t + \varphi) + \frac{1}{2}k^2 A^2\sin^2(\omega t + \varphi) \\ &= \frac{1}{2}kA^2[\cos^2(\omega t + \varphi) + A^2\sin^2(\omega t + \varphi)] \\ &= \frac{1}{2}kA^2 \end{split}$$

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعلي العسالي والبحست العلمية جامعة وهران للعلوم والتكنولوجيا محمد بوضياف

BOUTCHICHA Djilali

Université des Sciences et de la Technologie d'Oran Mohamed BOUDIAF Faculté de Génie Mécanique

Département de Génie Mécanique

- a) Un système masse-ressort possède une énergie mécanique de 0,6 J, une masse de 1,2 kg et une constante de rappel de 480 N/m.
- a) Quelle est l'amplitude des oscillations ?
- b) Quelle est la grandeur de la vitesse maximale?
- c) Si la constante de phase est nulle, aux quels instants, durant le 1er cycle d'oscillation, l'énergie cinétique est-elle égale à l'énergie potentielle ?
- a) L'amplitude des oscillations

$$E = \frac{1}{2}kA^{2}$$

$$A = \sqrt{\frac{2E}{k}} = \sqrt{\frac{2 \times 0.6}{480}} = 0.05 m = 5 cm.$$

b) La grandeur de la vitesse maximale

$$v_{max} = \omega A$$

$$v_{max} = \sqrt{\frac{k}{m}} \times A = \sqrt{\frac{480}{1.2}} \times 0.05 = 1 \text{ m/s}.$$

c) Les instants aux quels, durant le 1er cycle d'oscillation, l'énergie cinétique est égale à l'énergie potentielle

$$x(t) = A\cos(\omega t)$$

$$V(t) = T(t)$$

$$\frac{1}{2}kA^{2}\cos^{2}(\omega t) = kA^{2}\sin^{2}(\omega t)$$

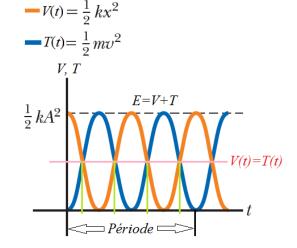
$$\cos^{2}(\omega t) = \sin^{2}(\omega t)$$

$$\tan^{2}(\omega t) = 1$$

$$\tan(\omega t) = \pm 1$$

$$\omega t_{n} = \frac{\pi}{4} + (n-1)\frac{\pi}{2}, \qquad n = 1,2,3,4$$

$$t_{n} = \frac{2\pi}{8\omega} + (n-1)\frac{T}{4\omega}, \qquad n = 1,2,3,4$$



$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{1.2}{480}} = \frac{\pi}{10} \ s$$

$$t_1 = \frac{T}{8} = 0.0393 \text{ s}; t_2 = \frac{\pi}{10} \left(\frac{3}{8}\right) = 0.118 \text{ s}; t_3 = \frac{\pi}{10} \left(\frac{5}{8}\right) = 0.196 \text{ s}; t_4 = \frac{\pi}{10} \left(\frac{7}{8}\right) = 0.275 \text{ s}.$$