
Programming in C

1

Example 1

▪ What if we want to process
three different pairs of integers?

2

Example 2
▪ One solution is to copy and paste the necessary lines

of code. Consider the following modification:

▪ What if you wanted to process four sets?
Five? Six? ….

3

Processing an arbitrary number of pairs

▪ We might be willing to copy and paste to process a
small number of pairs of integers but

▪ How about 1,000,000 pairs of integers?

▪ The solution lies in mechanisms used to control the
flow of execution

▪ In particular, the solution lies in the constructs that
allow us to instruct the computer to perform a task
repetitively

4

Repetition (Looping)
▪ Use looping when you want to execute a block of code

several times

⚫Block of code = Body of loop

▪ C provides three types of loops
while statement
➢ Most flexible
➢ No ‘restrictions’

for statement
➢ Natural ‘counting’ loop

do-while statement
➢ Always executes body at least once

1

2

3

5

The while Repetition Structure
▪ Repetition structure
⚫Programmer specifies

➢ Condition under which actions will be executed

➢ Actions to be repeated

⚫Psuedocode
While there are more items on my shopping list

Purchase next item and cross it off my list

▪ while loop repeated
⚫As long as condition is true
⚫Until condition becomes false

6

The while Repetition Structure

• The condition is

tested

• If the condition is

true, the loop body

is executed and the

condition is

retested.

• When the condition

is false, the loop is

exited.

condition

loop body

false

true

next stmt

7

The while Repetition Structure
▪ Syntax:

while (expression)

basic block

▪ Expression = Condition to be tested

⚫Resolves to true or false

▪ Basic Block = Loop Body

⚫Reminder – Basic Block:

➢ Single statement or

➢ Multiple statements enclosed in braces

1

8

Loop Control Variable (LCV)

9

▪ The loop control variable is the variable whose value
controls loop repetition.

▪ For a while loop to execute properly, the loop control
variable must be

⚫declared

⚫initialized

⚫tested

⚫updated in the body of the loop in such a way that the
expression/condition will become false
➢ If not we will have an endless or infinite loop

Counter-Controlled Repetition

10

▪ Requires:

1. Counter variable , LCV, initialized to beginning value

2. Condition that tests for the final value of the counter
(i.e., whether looping should continue)

3. Constant increment (or decrement) by which the
control variable is modified each time through the
loop

▪ Definite repetition

⚫Loop executes a specified number of times

⚫Number of repetitions is known

Example 3

EXECUTION CHART

count count<5 repetition

11

1

2

3

4

5

1 true

2 true

3 true

4 true

5 true

6 false

Loop Pitfalls

Enter value or zero to end: 2

What is wrong with my
program? It just sits there!

12

Loop Pitfalls: Misplaced semicolon

▪ Notice the ‘;’ after the while condition!

⚫ Body of loop is between) and ;

▪ Result here: INFINITE LOOP!
Ctrl-c = Kill foreground process

13

The for Repetition Structure
▪ A natural 'counting' loop

▪ Steps are built into for structure!

1. Initialization

2. Loop condition test

3. Increment or decrement false
condition

true

next stmt

initialization

loop body

…

increment

14

Review: Assignment Operators

15

▪ Statements of the form

variable = variable operator expression;

can be rewritten as

variable operator= expression;

▪ Examples of assignment operators:

a += 5 (a = a + 5)

a -= 4 (a = a - 4)

b *= 5 (b = b * 5)

c /= 3 (c = c / 3)

d %= 9 (d = d % 9)

Review: Pre-increment operator
Pre-increment operator: ++n

i) Stand alone: add 1 to n

If n equals 1, then after execution of the statement

the value of n will be 2.

ii) In an expression:
Add 1 to n and then use the new value of n in the expression.

If n is initially 1, the above statement will print the value 2.

After execution of printf, n will have the value 2.

16

Review: Post-increment operator
Pre-increment operator: n++

i) Stand alone: add 1 to n

If n equals 1, then after execution of the statement

the value of n will be 2.

ii) In an expression:
Use the value of n in the expression and then add 1 to n.

If n is initially 1, the above statement will print the value 1 and then
add 1 to n. After execution, n will have the value 2.

17

Pre- and Post-decrement operator

18

▪ Pre- and post-decrement operators, --n, n-- ,
behave in a similar manner

▪ Use caution when using in an expression

⚫Do not use unless you know what you are doing!

The for Repetition Structure
▪ Syntax:

for (initialization; test; increment)

basic block

2

19

for loop example
▪ Prints the integers from one to ten

20

for Loop Example

How many times does loop body execute?

21

for Loop Example

How many times does loop body execute?

Bite 1 -- Yum!

Bite 2 -- Yum!

Bite 3 -- Yum!

22

The do-while Repetition Structure
▪ The do-while repetition structure is similar to the
while structure

⚫Condition for repetition tested after the body of the loop
is executed

true

false

loop body

condition

23

The do-while Repetition Structure
▪ Syntax:

do {

statements

} while (condition);

3

24

The do-while Repetition Structure

▪ Example

⚫Prints the integers from 1 to 10

25

The do-while Repetition Structure

▪ Example

⚫ Makes sure that the user enters a valid weight

26

The break Statement

▪ break

⚫Causes immediate exit from
a while, for, do/while or switch structure

⚫We will use the break statement
only to exit the switch structure!

27

The continue Statement

▪ continue

⚫Control passes to the next iteration

⚫We will not use the continue statement!

28

Programming in C

T H E E N D

29

	Diapositive 1 Programming in C
	Diapositive 2 Example 1
	Diapositive 3 Example 2
	Diapositive 4 Processing an arbitrary number of pairs
	Diapositive 5 Repetition (Looping)
	Diapositive 6 The while Repetition Structure
	Diapositive 7 The while Repetition Structure
	Diapositive 8 The while Repetition Structure
	Diapositive 9 Loop Control Variable (LCV)
	Diapositive 10 Counter-Controlled Repetition
	Diapositive 11 Example 3
	Diapositive 12 Loop Pitfalls
	Diapositive 13 Loop Pitfalls: Misplaced semicolon
	Diapositive 14 The for Repetition Structure
	Diapositive 15 Review: Assignment Operators
	Diapositive 16 Review: Pre-increment operator
	Diapositive 17 Review: Post-increment operator
	Diapositive 18 Pre- and Post-decrement operator
	Diapositive 19 The for Repetition Structure
	Diapositive 20 for loop example
	Diapositive 21
	Diapositive 22 for Loop Example
	Diapositive 23 The do-while Repetition Structure
	Diapositive 24 The do-while Repetition Structure
	Diapositive 25 The do-while Repetition Structure
	Diapositive 26 The do-while Repetition Structure
	Diapositive 27 The break Statement
	Diapositive 28 The continue Statement
	Diapositive 29 Programming in C

