Semester : 02
Teaching Unit: Fundamental
Subject: Analysis 2
Credits: 6
Coefficient : 4
Course Objective:
This module aims to give students the different aspects of integral calculus: Riemann integral, different techniques for calculating primitives, introduction to the solution of differential equations.
Recommended Prior Knowledge: Analysis 1.
Chapter I: Indefinite Integrals
Indefinite Integral, Some Properties of the Indefinite Integral, Integration Methods, Variable Change Integration, Part Integration, Regular Expression Integration, Irrational Function Integration.
Chapter II: Definite Integrals
Definite Integral, Properties of Definite Integrals, Integral Function of its Upper Bound, Newton-Leibniz Formula, Cauchy-Schwarz Inequality, Darboux Sums-Conditions of the Existence of the Integral, Properties of Darboux Sums, Integrability of Continuous and Monotonic Functions.
Chapter III: First-Order Differential Equations
General, Classification of First-Order Differential Equations, Equation with Separable Variables, Homogeneous Equations, Linear Equations, Bernoulli Method, Method of Variation of the Lagrange Constant, Bernoulli's Equation, Total Differential Equation, Riccati's Equation.
Chapter IV: Second-Order Differential Equations with Constant Coefficients
Homogeneous second-order differential equations with constant coefficients, Non-homogeneous second-order differential equations with constant coefficients, Methods for solving second-order differential equations with constant coefficients.
Method of assessment: Examination (60%), continuous assessment (40%)
Références
· J.-M. Monier, Analyse PCSI-PTSI, Dunod, Paris 2003.
· Y. Bougrov et S. Nikolski, Cours de Mathématiques Supérieures, Editions Mir, Moscou, 1983.
· N. Piskounov, Calcul différentiel et intégral, Tome 1, Editions Mir, Moscou, 1980.
· K. Allab, Eléments d'Analyse, OPU, Alger, 1984.
· B. Calvo, J. Doyen, A. Calvo, F. Boschet, Cours d'analyse, Librairie Armand Colin, Paris, 1976.
· J. Lelong-Ferrand et J. M. Arnaudiès, Cours de mathématiques, tome 2, Edition Dunod, 1978.
- Teacher: Mounir Tlemcani
